add Stable diffusion examples (#12418)
* add openjourney example * add timing * add stable diffusion to model page * 4.1 fix * small fix
This commit is contained in:
		
							parent
							
								
									54c62feb74
								
							
						
					
					
						commit
						d2a37b6ab2
					
				
					 6 changed files with 96 additions and 8 deletions
				
			
		| 
						 | 
					@ -330,6 +330,7 @@ Over 50 models have been optimized/verified on `ipex-llm`, including *LLaMA/LLaM
 | 
				
			||||||
| MiniCPM-V-2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm-v-2) | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2) |
 | 
					| MiniCPM-V-2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm-v-2) | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2) |
 | 
				
			||||||
| MiniCPM-Llama3-V-2_5 |  | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-Llama3-V-2_5) |
 | 
					| MiniCPM-Llama3-V-2_5 |  | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-Llama3-V-2_5) |
 | 
				
			||||||
| MiniCPM-V-2_6 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm-v-2_6) | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2_6) | 
 | 
					| MiniCPM-V-2_6 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm-v-2_6) | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2_6) | 
 | 
				
			||||||
 | 
					| StableDiffusion | | [link](python/llm/example/GPU/HuggingFace/Multimodal/StableDiffusion) |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Get Support
 | 
					## Get Support
 | 
				
			||||||
- Please report a bug or raise a feature request by opening a [Github Issue](https://github.com/intel-analytics/ipex-llm/issues)
 | 
					- Please report a bug or raise a feature request by opening a [Github Issue](https://github.com/intel-analytics/ipex-llm/issues)
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -329,6 +329,7 @@ See the demo of running [*Text-Generation-WebUI*](https://ipex-llm.readthedocs.i
 | 
				
			||||||
| MiniCPM-V-2 |  | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2) |
 | 
					| MiniCPM-V-2 |  | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2) |
 | 
				
			||||||
| MiniCPM-Llama3-V-2_5 |  | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-Llama3-V-2_5) |
 | 
					| MiniCPM-Llama3-V-2_5 |  | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-Llama3-V-2_5) |
 | 
				
			||||||
| MiniCPM-V-2_6 |  | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2_6) | 
 | 
					| MiniCPM-V-2_6 |  | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2_6) | 
 | 
				
			||||||
 | 
					| StableDiffusion | | [link](python/llm/example/GPU/HuggingFace/Multimodal/StableDiffusion) |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## 官方支持
 | 
					## 官方支持
 | 
				
			||||||
- 如果遇到问题,或者请求新功能支持,请提交 [Github Issue](https://github.com/intel-analytics/ipex-llm/issues) 告诉我们
 | 
					- 如果遇到问题,或者请求新功能支持,请提交 [Github Issue](https://github.com/intel-analytics/ipex-llm/issues) 告诉我们
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -88,8 +88,19 @@ set SYCL_CACHE_PERSISTENT=1
 | 
				
			||||||
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
 | 
					> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### 4. Examples
 | 
					### 4. Examples
 | 
				
			||||||
 | 
					#### 4.1 Openjourney Example
 | 
				
			||||||
 | 
					The example shows how to run Openjourney example on Intel GPU.
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					python ./openjourney.py
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#### 4.1 StableDiffusion XL Example
 | 
					Arguments info:
 | 
				
			||||||
 | 
					- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Openjourney model (e.g. `prompthero/openjourney`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'prompthero/openjourney'`.
 | 
				
			||||||
 | 
					- `--prompt PROMPT`: argument defining the prompt to be infered. It is default to be `'An astronaut in the forest, detailed, 8k'`.
 | 
				
			||||||
 | 
					- `--save-path`: argument defining the path to save the generated figure. It is default to be `openjourney-gpu.png`.
 | 
				
			||||||
 | 
					- `--num-steps`: argument defining the number of inference steps. It is default to be `20`. 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 4.2 StableDiffusion XL Example
 | 
				
			||||||
The example shows how to run StableDiffusion XL example on Intel GPU.
 | 
					The example shows how to run StableDiffusion XL example on Intel GPU.
 | 
				
			||||||
```bash
 | 
					```bash
 | 
				
			||||||
python ./sdxl.py
 | 
					python ./sdxl.py
 | 
				
			||||||
| 
						 | 
					@ -105,7 +116,7 @@ Arguments info:
 | 
				
			||||||
The sample output image looks like below. 
 | 
					The sample output image looks like below. 
 | 
				
			||||||

 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#### 4.2 LCM-LoRA Example
 | 
					#### 4.3 LCM-LoRA Example
 | 
				
			||||||
The example shows how to performing inference with LCM-LoRA on Intel GPU.
 | 
					The example shows how to performing inference with LCM-LoRA on Intel GPU.
 | 
				
			||||||
```bash
 | 
					```bash
 | 
				
			||||||
python ./lora-lcm.py
 | 
					python ./lora-lcm.py
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -19,6 +19,7 @@ import torch
 | 
				
			||||||
from diffusers import DiffusionPipeline, LCMScheduler
 | 
					from diffusers import DiffusionPipeline, LCMScheduler
 | 
				
			||||||
import ipex_llm
 | 
					import ipex_llm
 | 
				
			||||||
import argparse
 | 
					import argparse
 | 
				
			||||||
 | 
					import time
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def main(args):
 | 
					def main(args):
 | 
				
			||||||
| 
						 | 
					@ -34,10 +35,21 @@ def main(args):
 | 
				
			||||||
    pipe.load_lora_weights(args.lora_weights_path)
 | 
					    pipe.load_lora_weights(args.lora_weights_path)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    generator = torch.manual_seed(42)
 | 
					    generator = torch.manual_seed(42)
 | 
				
			||||||
    image = pipe(
 | 
					
 | 
				
			||||||
        prompt=args.prompt, num_inference_steps=args.num_steps, generator=generator, guidance_scale=1.0
 | 
					    with torch.inference_mode():
 | 
				
			||||||
    ).images[0]
 | 
					        # warmup
 | 
				
			||||||
    image.save(args.save_path)
 | 
					        image = pipe(
 | 
				
			||||||
 | 
					            prompt=args.prompt, num_inference_steps=args.num_steps, generator=generator, guidance_scale=1.0
 | 
				
			||||||
 | 
					        ).images[0]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # start inference
 | 
				
			||||||
 | 
					        st = time.time()
 | 
				
			||||||
 | 
					        image = pipe(
 | 
				
			||||||
 | 
					            prompt=args.prompt, num_inference_steps=args.num_steps, generator=generator, guidance_scale=1.0
 | 
				
			||||||
 | 
					        ).images[0]   
 | 
				
			||||||
 | 
					        end = time.time()
 | 
				
			||||||
 | 
					        print(f'Inference time: {end-st} s')
 | 
				
			||||||
 | 
					        image.save(args.save_path)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if __name__=="__main__":
 | 
					if __name__=="__main__":
 | 
				
			||||||
    parser = argparse.ArgumentParser(description="Stable Diffusion lora-lcm")
 | 
					    parser = argparse.ArgumentParser(description="Stable Diffusion lora-lcm")
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,54 @@
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Copyright 2016 The BigDL Authors.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Code is adapted from https://huggingface.co/prompthero/openjourney
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from diffusers import StableDiffusionPipeline
 | 
				
			||||||
 | 
					import torch
 | 
				
			||||||
 | 
					import ipex_llm
 | 
				
			||||||
 | 
					import argparse
 | 
				
			||||||
 | 
					import time
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def main(args):
 | 
				
			||||||
 | 
					    pipe = StableDiffusionPipeline.from_pretrained(
 | 
				
			||||||
 | 
					        args.repo_id_or_model_path, 
 | 
				
			||||||
 | 
					        torch_dtype=torch.float16, 
 | 
				
			||||||
 | 
					        use_safetensors=True)
 | 
				
			||||||
 | 
					    pipe = pipe.to("xpu")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    with torch.inference_mode():
 | 
				
			||||||
 | 
					        # warmup
 | 
				
			||||||
 | 
					        image = pipe(args.prompt, num_inference_steps=args.num_steps).images[0]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # start inference
 | 
				
			||||||
 | 
					        st = time.time()
 | 
				
			||||||
 | 
					        image = pipe(args.prompt, num_inference_steps=args.num_steps).images[0]
 | 
				
			||||||
 | 
					        end = time.time()
 | 
				
			||||||
 | 
					        print(f'Inference time: {end-st} s')
 | 
				
			||||||
 | 
					        image.save(args.save_path)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__=="__main__":
 | 
				
			||||||
 | 
					    parser = argparse.ArgumentParser(description="Stable Diffusion")
 | 
				
			||||||
 | 
					    parser.add_argument('--repo-id-or-model-path', type=str, default="prompthero/openjourney",
 | 
				
			||||||
 | 
					                        help='The huggingface repo id for the stable diffusion model checkpoint')
 | 
				
			||||||
 | 
					    parser.add_argument('--prompt', type=str, default="An astronaut in the forest, detailed, 8k",
 | 
				
			||||||
 | 
					                        help='Prompt to infer')
 | 
				
			||||||
 | 
					    parser.add_argument('--save-path',type=str,default="openjourney-gpu.png",
 | 
				
			||||||
 | 
					                        help="Path to save the generated figure")
 | 
				
			||||||
 | 
					    parser.add_argument('--num-steps',type=int,default=20,
 | 
				
			||||||
 | 
					                        help="Number of inference steps")
 | 
				
			||||||
 | 
					    args = parser.parse_args()
 | 
				
			||||||
 | 
					    main(args)
 | 
				
			||||||
| 
						 | 
					@ -21,6 +21,7 @@ import ipex_llm
 | 
				
			||||||
import numpy as np
 | 
					import numpy as np
 | 
				
			||||||
from PIL import Image
 | 
					from PIL import Image
 | 
				
			||||||
import argparse
 | 
					import argparse
 | 
				
			||||||
 | 
					import time
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def main(args):
 | 
					def main(args):
 | 
				
			||||||
| 
						 | 
					@ -30,8 +31,16 @@ def main(args):
 | 
				
			||||||
        use_safetensors=True
 | 
					        use_safetensors=True
 | 
				
			||||||
    ).to("xpu")
 | 
					    ).to("xpu")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    image = pipeline_text2image(prompt=args.prompt,num_inference_steps=args.num_steps).images[0]
 | 
					    with torch.inference_mode():
 | 
				
			||||||
    image.save(args.save_path)
 | 
					        # warmup
 | 
				
			||||||
 | 
					        image = pipeline_text2image(prompt=args.prompt,num_inference_steps=args.num_steps).images[0]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # start inference
 | 
				
			||||||
 | 
					        st = time.time()
 | 
				
			||||||
 | 
					        image = pipeline_text2image(prompt=args.prompt,num_inference_steps=args.num_steps).images[0]
 | 
				
			||||||
 | 
					        end = time.time()
 | 
				
			||||||
 | 
					        print(f'Inference time: {end-st} s')
 | 
				
			||||||
 | 
					        image.save(args.save_path)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if __name__=="__main__":
 | 
					if __name__=="__main__":
 | 
				
			||||||
    parser = argparse.ArgumentParser(description="Stable Diffusion")
 | 
					    parser = argparse.ArgumentParser(description="Stable Diffusion")
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in a new issue