* add openjourney example * add timing * add stable diffusion to model page * 4.1 fix * small fix
		
			
				
	
	
		
			67 lines
		
	
	
		
			No EOL
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			67 lines
		
	
	
		
			No EOL
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
# Code is adapted from https://huggingface.co/docs/diffusers/main/en/using-diffusers/inference_with_lcm_lora
 | 
						|
 | 
						|
import torch
 | 
						|
from diffusers import DiffusionPipeline, LCMScheduler
 | 
						|
import ipex_llm
 | 
						|
import argparse
 | 
						|
import time
 | 
						|
 | 
						|
 | 
						|
def main(args):
 | 
						|
    pipe = DiffusionPipeline.from_pretrained(
 | 
						|
        args.repo_id_or_model_path,
 | 
						|
        torch_dtype=torch.bfloat16,
 | 
						|
    ).to("xpu")
 | 
						|
 | 
						|
    # set scheduler
 | 
						|
    pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
 | 
						|
 | 
						|
    # load LCM-LoRA
 | 
						|
    pipe.load_lora_weights(args.lora_weights_path)
 | 
						|
 | 
						|
    generator = torch.manual_seed(42)
 | 
						|
 | 
						|
    with torch.inference_mode():
 | 
						|
        # warmup
 | 
						|
        image = pipe(
 | 
						|
            prompt=args.prompt, num_inference_steps=args.num_steps, generator=generator, guidance_scale=1.0
 | 
						|
        ).images[0]
 | 
						|
 | 
						|
        # start inference
 | 
						|
        st = time.time()
 | 
						|
        image = pipe(
 | 
						|
            prompt=args.prompt, num_inference_steps=args.num_steps, generator=generator, guidance_scale=1.0
 | 
						|
        ).images[0]   
 | 
						|
        end = time.time()
 | 
						|
        print(f'Inference time: {end-st} s')
 | 
						|
        image.save(args.save_path)
 | 
						|
 | 
						|
if __name__=="__main__":
 | 
						|
    parser = argparse.ArgumentParser(description="Stable Diffusion lora-lcm")
 | 
						|
    parser.add_argument('--repo-id-or-model-path', type=str, default="stabilityai/stable-diffusion-xl-base-1.0",
 | 
						|
                        help='The huggingface repo id for the stable diffusion model checkpoint')
 | 
						|
    parser.add_argument('--lora-weights-path',type=str,default="latent-consistency/lcm-lora-sdxl",
 | 
						|
                        help='The huggingface repo id for the lcm lora sdxl checkpoint')
 | 
						|
    parser.add_argument('--prompt', type=str, default="A lovely dog on the table, detailed, 8k",
 | 
						|
                        help='Prompt to infer')
 | 
						|
    parser.add_argument('--save-path',type=str,default="lcm-lora-sdxl-gpu.png",
 | 
						|
                        help="Path to save the generated figure")
 | 
						|
    parser.add_argument('--num-steps',type=int,default=4,
 | 
						|
                        help="Number of inference steps")
 | 
						|
    args = parser.parse_args()
 | 
						|
    main(args) |