add Stable diffusion examples (#12418)

* add openjourney example

* add timing

* add stable diffusion to model page

* 4.1 fix

* small fix
This commit is contained in:
Jinhe 2024-11-20 17:18:36 +08:00 committed by GitHub
parent 54c62feb74
commit d2a37b6ab2
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
6 changed files with 96 additions and 8 deletions

View file

@ -330,6 +330,7 @@ Over 50 models have been optimized/verified on `ipex-llm`, including *LLaMA/LLaM
| MiniCPM-V-2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm-v-2) | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2) | | MiniCPM-V-2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm-v-2) | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2) |
| MiniCPM-Llama3-V-2_5 | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-Llama3-V-2_5) | | MiniCPM-Llama3-V-2_5 | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-Llama3-V-2_5) |
| MiniCPM-V-2_6 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm-v-2_6) | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2_6) | | MiniCPM-V-2_6 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm-v-2_6) | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2_6) |
| StableDiffusion | | [link](python/llm/example/GPU/HuggingFace/Multimodal/StableDiffusion) |
## Get Support ## Get Support
- Please report a bug or raise a feature request by opening a [Github Issue](https://github.com/intel-analytics/ipex-llm/issues) - Please report a bug or raise a feature request by opening a [Github Issue](https://github.com/intel-analytics/ipex-llm/issues)

View file

@ -329,6 +329,7 @@ See the demo of running [*Text-Generation-WebUI*](https://ipex-llm.readthedocs.i
| MiniCPM-V-2 | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2) | | MiniCPM-V-2 | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2) |
| MiniCPM-Llama3-V-2_5 | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-Llama3-V-2_5) | | MiniCPM-Llama3-V-2_5 | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-Llama3-V-2_5) |
| MiniCPM-V-2_6 | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2_6) | | MiniCPM-V-2_6 | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2_6) |
| StableDiffusion | | [link](python/llm/example/GPU/HuggingFace/Multimodal/StableDiffusion) |
## 官方支持 ## 官方支持
- 如果遇到问题,或者请求新功能支持,请提交 [Github Issue](https://github.com/intel-analytics/ipex-llm/issues) 告诉我们 - 如果遇到问题,或者请求新功能支持,请提交 [Github Issue](https://github.com/intel-analytics/ipex-llm/issues) 告诉我们

View file

@ -88,8 +88,19 @@ set SYCL_CACHE_PERSISTENT=1
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile. > For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Examples ### 4. Examples
#### 4.1 Openjourney Example
The example shows how to run Openjourney example on Intel GPU.
```bash
python ./openjourney.py
```
#### 4.1 StableDiffusion XL Example Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Openjourney model (e.g. `prompthero/openjourney`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'prompthero/openjourney'`.
- `--prompt PROMPT`: argument defining the prompt to be infered. It is default to be `'An astronaut in the forest, detailed, 8k'`.
- `--save-path`: argument defining the path to save the generated figure. It is default to be `openjourney-gpu.png`.
- `--num-steps`: argument defining the number of inference steps. It is default to be `20`.
#### 4.2 StableDiffusion XL Example
The example shows how to run StableDiffusion XL example on Intel GPU. The example shows how to run StableDiffusion XL example on Intel GPU.
```bash ```bash
python ./sdxl.py python ./sdxl.py
@ -105,7 +116,7 @@ Arguments info:
The sample output image looks like below. The sample output image looks like below.
![image](https://llm-assets.readthedocs.io/en/latest/_images/sdxl-gpu.png) ![image](https://llm-assets.readthedocs.io/en/latest/_images/sdxl-gpu.png)
#### 4.2 LCM-LoRA Example #### 4.3 LCM-LoRA Example
The example shows how to performing inference with LCM-LoRA on Intel GPU. The example shows how to performing inference with LCM-LoRA on Intel GPU.
```bash ```bash
python ./lora-lcm.py python ./lora-lcm.py

View file

@ -19,6 +19,7 @@ import torch
from diffusers import DiffusionPipeline, LCMScheduler from diffusers import DiffusionPipeline, LCMScheduler
import ipex_llm import ipex_llm
import argparse import argparse
import time
def main(args): def main(args):
@ -34,9 +35,20 @@ def main(args):
pipe.load_lora_weights(args.lora_weights_path) pipe.load_lora_weights(args.lora_weights_path)
generator = torch.manual_seed(42) generator = torch.manual_seed(42)
with torch.inference_mode():
# warmup
image = pipe( image = pipe(
prompt=args.prompt, num_inference_steps=args.num_steps, generator=generator, guidance_scale=1.0 prompt=args.prompt, num_inference_steps=args.num_steps, generator=generator, guidance_scale=1.0
).images[0] ).images[0]
# start inference
st = time.time()
image = pipe(
prompt=args.prompt, num_inference_steps=args.num_steps, generator=generator, guidance_scale=1.0
).images[0]
end = time.time()
print(f'Inference time: {end-st} s')
image.save(args.save_path) image.save(args.save_path)
if __name__=="__main__": if __name__=="__main__":

View file

@ -0,0 +1,54 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Code is adapted from https://huggingface.co/prompthero/openjourney
from diffusers import StableDiffusionPipeline
import torch
import ipex_llm
import argparse
import time
def main(args):
pipe = StableDiffusionPipeline.from_pretrained(
args.repo_id_or_model_path,
torch_dtype=torch.float16,
use_safetensors=True)
pipe = pipe.to("xpu")
with torch.inference_mode():
# warmup
image = pipe(args.prompt, num_inference_steps=args.num_steps).images[0]
# start inference
st = time.time()
image = pipe(args.prompt, num_inference_steps=args.num_steps).images[0]
end = time.time()
print(f'Inference time: {end-st} s')
image.save(args.save_path)
if __name__=="__main__":
parser = argparse.ArgumentParser(description="Stable Diffusion")
parser.add_argument('--repo-id-or-model-path', type=str, default="prompthero/openjourney",
help='The huggingface repo id for the stable diffusion model checkpoint')
parser.add_argument('--prompt', type=str, default="An astronaut in the forest, detailed, 8k",
help='Prompt to infer')
parser.add_argument('--save-path',type=str,default="openjourney-gpu.png",
help="Path to save the generated figure")
parser.add_argument('--num-steps',type=int,default=20,
help="Number of inference steps")
args = parser.parse_args()
main(args)

View file

@ -21,6 +21,7 @@ import ipex_llm
import numpy as np import numpy as np
from PIL import Image from PIL import Image
import argparse import argparse
import time
def main(args): def main(args):
@ -30,7 +31,15 @@ def main(args):
use_safetensors=True use_safetensors=True
).to("xpu") ).to("xpu")
with torch.inference_mode():
# warmup
image = pipeline_text2image(prompt=args.prompt,num_inference_steps=args.num_steps).images[0] image = pipeline_text2image(prompt=args.prompt,num_inference_steps=args.num_steps).images[0]
# start inference
st = time.time()
image = pipeline_text2image(prompt=args.prompt,num_inference_steps=args.num_steps).images[0]
end = time.time()
print(f'Inference time: {end-st} s')
image.save(args.save_path) image.save(args.save_path)
if __name__=="__main__": if __name__=="__main__":