LLM: add whisper example for arc transformer int4 (#8749)
* add whisper example for arc int4 * fix
This commit is contained in:
parent
77844125f2
commit
d28ad8f7db
3 changed files with 120 additions and 1 deletions
|
|
@ -0,0 +1,43 @@
|
|||
# Whisper
|
||||
|
||||
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Whisper models on any Intel® Arc™ A-Series Graphics. For illustration purposes, we utilize the [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) as a reference Whisper model.
|
||||
|
||||
## 0. Requirements
|
||||
To run these examples with BigDL-LLM on Intel® Arc™ A-Series Graphics, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||||
|
||||
## Example: Recognize Tokens using `generate()` API
|
||||
In the example [recognize.py](./recognize.py), we show a basic use case for a Whisper model to conduct transcription using `generate()` API, with BigDL-LLM INT4 optimizations on Intel® Arc™ A-Series Graphics.
|
||||
### 1. Install
|
||||
We suggest using conda to manage environment:
|
||||
```bash
|
||||
conda create -n llm python=3.9
|
||||
conda activate llm
|
||||
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
|
||||
# you can install specific ipex/torch version for your need
|
||||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
|
||||
pip install datasets soundfile librosa # required by audio processing
|
||||
```
|
||||
|
||||
### 2. Configures OneAPI environment variables
|
||||
```bash
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
```
|
||||
|
||||
### 3. Run
|
||||
```
|
||||
python ./recognize.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --repo-id-or-data-path REPO_ID_OR_DATA_PATH --language LANGUAGE
|
||||
```
|
||||
|
||||
Arguments info:
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Whisper model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openai/whisper-tiny'`.
|
||||
- `--repo-id-or-data-path REPO_ID_OR_DATA_PATH`: argument defining the huggingface repo id for the audio dataset to be downloaded, or the path to the huggingface dataset folder. It is default to be `'hf-internal-testing/librispeech_asr_dummy'`.
|
||||
- `--language LANGUAGE`: argument defining language to be transcribed. It is default to be `english`.
|
||||
|
||||
#### Sample Output
|
||||
#### [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny)
|
||||
|
||||
```log
|
||||
Inference time: xxxx s
|
||||
-------------------- Output --------------------
|
||||
[' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.']
|
||||
```
|
||||
|
|
@ -0,0 +1,76 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import torch
|
||||
import time
|
||||
import argparse
|
||||
|
||||
from bigdl.llm.transformers import AutoModelForSpeechSeq2Seq
|
||||
from transformers import WhisperProcessor
|
||||
from datasets import load_dataset
|
||||
import intel_extension_for_pytorch as ipex
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Recognize Tokens using `generate()` API for Whisper model')
|
||||
parser.add_argument('--repo-id-or-model-path', type=str, default="openai/whisper-tiny",
|
||||
help='The huggingface repo id for the Whisper model to be downloaded'
|
||||
', or the path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--repo-id-or-data-path', type=str,
|
||||
default="hf-internal-testing/librispeech_asr_dummy",
|
||||
help='The huggingface repo id for the audio dataset to be downloaded'
|
||||
', or the path to the huggingface dataset folder')
|
||||
parser.add_argument('--language', type=str, default="english",
|
||||
help='language to be transcribed')
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
dataset_path = args.repo_id_or_data_path
|
||||
language = args.language
|
||||
|
||||
# Load model in 4 bit,
|
||||
# which convert the relevant layers in the model into INT4 format
|
||||
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_path,
|
||||
load_in_4bit=True,
|
||||
optimize_model=False)
|
||||
model.half().to('xpu')
|
||||
model.config.forced_decoder_ids = None
|
||||
|
||||
# Load processor
|
||||
processor = WhisperProcessor.from_pretrained(model_path)
|
||||
forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task="transcribe")
|
||||
|
||||
# Load dummy dataset and read audio files
|
||||
ds = load_dataset(dataset_path, "clean", split="validation")
|
||||
|
||||
# Generate predicted tokens
|
||||
with torch.inference_mode():
|
||||
sample = ds[0]["audio"]
|
||||
|
||||
input_features = processor(sample["array"],
|
||||
sampling_rate=sample["sampling_rate"],
|
||||
return_tensors="pt").input_features.half().to('xpu')
|
||||
st = time.time()
|
||||
# if your selected model is capable of utilizing previous key/value attentions
|
||||
# to enhance decoding speed, but has `"use_cache": false` in its model config,
|
||||
# it is important to set `use_cache=True` explicitly in the `generate` function
|
||||
# to obtain optimal performance with BigDL-LLM INT4 optimizations
|
||||
predicted_ids = model.generate(input_features,
|
||||
forced_decoder_ids=forced_decoder_ids)
|
||||
end = time.time()
|
||||
output_str = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
||||
print(f'Inference time: {end-st} s')
|
||||
print('-'*20, 'Output', '-'*20)
|
||||
print(output_str)
|
||||
|
|
@ -6,7 +6,7 @@ In this directory, you will find examples on how you could apply BigDL-LLM INT4
|
|||
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||||
|
||||
## Example: Recognize Tokens using `generate()` API
|
||||
In the example [generate.py](./generate.py), we show a basic use case for a Whisper model to conduct transcription using `generate()` API, with BigDL-LLM INT4 optimizations.
|
||||
In the example [recognize.py](./recognize.py), we show a basic use case for a Whisper model to conduct transcription using `generate()` API, with BigDL-LLM INT4 optimizations.
|
||||
### 1. Install
|
||||
We suggest using conda to manage environment:
|
||||
```bash
|
||||
|
|
|
|||
Loading…
Reference in a new issue