diff --git a/python/llm/example/transformers/transformers_int4/GPU/whisper/readme.md b/python/llm/example/transformers/transformers_int4/GPU/whisper/readme.md new file mode 100644 index 00000000..de0733c7 --- /dev/null +++ b/python/llm/example/transformers/transformers_int4/GPU/whisper/readme.md @@ -0,0 +1,43 @@ +# Whisper + +In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Whisper models on any Intel® Arc™ A-Series Graphics. For illustration purposes, we utilize the [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) as a reference Whisper model. + +## 0. Requirements +To run these examples with BigDL-LLM on Intel® Arc™ A-Series Graphics, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. + +## Example: Recognize Tokens using `generate()` API +In the example [recognize.py](./recognize.py), we show a basic use case for a Whisper model to conduct transcription using `generate()` API, with BigDL-LLM INT4 optimizations on Intel® Arc™ A-Series Graphics. +### 1. Install +We suggest using conda to manage environment: +```bash +conda create -n llm python=3.9 +conda activate llm +# below command will install intel_extension_for_pytorch==2.0.110+xpu as default +# you can install specific ipex/torch version for your need +pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu +pip install datasets soundfile librosa # required by audio processing +``` + +### 2. Configures OneAPI environment variables +```bash +source /opt/intel/oneapi/setvars.sh +``` + +### 3. Run +``` +python ./recognize.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --repo-id-or-data-path REPO_ID_OR_DATA_PATH --language LANGUAGE +``` + +Arguments info: +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Whisper model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openai/whisper-tiny'`. +- `--repo-id-or-data-path REPO_ID_OR_DATA_PATH`: argument defining the huggingface repo id for the audio dataset to be downloaded, or the path to the huggingface dataset folder. It is default to be `'hf-internal-testing/librispeech_asr_dummy'`. +- `--language LANGUAGE`: argument defining language to be transcribed. It is default to be `english`. + +#### Sample Output +#### [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) + +```log +Inference time: xxxx s +-------------------- Output -------------------- +[' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.'] +``` diff --git a/python/llm/example/transformers/transformers_int4/GPU/whisper/recognize.py b/python/llm/example/transformers/transformers_int4/GPU/whisper/recognize.py new file mode 100644 index 00000000..9ae001c7 --- /dev/null +++ b/python/llm/example/transformers/transformers_int4/GPU/whisper/recognize.py @@ -0,0 +1,76 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import torch +import time +import argparse + +from bigdl.llm.transformers import AutoModelForSpeechSeq2Seq +from transformers import WhisperProcessor +from datasets import load_dataset +import intel_extension_for_pytorch as ipex + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Recognize Tokens using `generate()` API for Whisper model') + parser.add_argument('--repo-id-or-model-path', type=str, default="openai/whisper-tiny", + help='The huggingface repo id for the Whisper model to be downloaded' + ', or the path to the huggingface checkpoint folder') + parser.add_argument('--repo-id-or-data-path', type=str, + default="hf-internal-testing/librispeech_asr_dummy", + help='The huggingface repo id for the audio dataset to be downloaded' + ', or the path to the huggingface dataset folder') + parser.add_argument('--language', type=str, default="english", + help='language to be transcribed') + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + dataset_path = args.repo_id_or_data_path + language = args.language + + # Load model in 4 bit, + # which convert the relevant layers in the model into INT4 format + model = AutoModelForSpeechSeq2Seq.from_pretrained(model_path, + load_in_4bit=True, + optimize_model=False) + model.half().to('xpu') + model.config.forced_decoder_ids = None + + # Load processor + processor = WhisperProcessor.from_pretrained(model_path) + forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task="transcribe") + + # Load dummy dataset and read audio files + ds = load_dataset(dataset_path, "clean", split="validation") + + # Generate predicted tokens + with torch.inference_mode(): + sample = ds[0]["audio"] + + input_features = processor(sample["array"], + sampling_rate=sample["sampling_rate"], + return_tensors="pt").input_features.half().to('xpu') + st = time.time() + # if your selected model is capable of utilizing previous key/value attentions + # to enhance decoding speed, but has `"use_cache": false` in its model config, + # it is important to set `use_cache=True` explicitly in the `generate` function + # to obtain optimal performance with BigDL-LLM INT4 optimizations + predicted_ids = model.generate(input_features, + forced_decoder_ids=forced_decoder_ids) + end = time.time() + output_str = processor.batch_decode(predicted_ids, skip_special_tokens=True) + print(f'Inference time: {end-st} s') + print('-'*20, 'Output', '-'*20) + print(output_str) \ No newline at end of file diff --git a/python/llm/example/transformers/transformers_int4/whisper/readme.md b/python/llm/example/transformers/transformers_int4/whisper/readme.md index 4f77a4af..c1d266ce 100644 --- a/python/llm/example/transformers/transformers_int4/whisper/readme.md +++ b/python/llm/example/transformers/transformers_int4/whisper/readme.md @@ -6,7 +6,7 @@ In this directory, you will find examples on how you could apply BigDL-LLM INT4 To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. ## Example: Recognize Tokens using `generate()` API -In the example [generate.py](./generate.py), we show a basic use case for a Whisper model to conduct transcription using `generate()` API, with BigDL-LLM INT4 optimizations. +In the example [recognize.py](./recognize.py), we show a basic use case for a Whisper model to conduct transcription using `generate()` API, with BigDL-LLM INT4 optimizations. ### 1. Install We suggest using conda to manage environment: ```bash