LLM: add whisper example for arc transformer int4 (#8749)

* add whisper example for arc int4

* fix
This commit is contained in:
Ruonan Wang 2023-08-14 17:05:48 +08:00 committed by GitHub
parent 77844125f2
commit d28ad8f7db
3 changed files with 120 additions and 1 deletions

View file

@ -0,0 +1,43 @@
# Whisper
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Whisper models on any Intel® Arc™ A-Series Graphics. For illustration purposes, we utilize the [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) as a reference Whisper model.
## 0. Requirements
To run these examples with BigDL-LLM on Intel® Arc™ A-Series Graphics, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Recognize Tokens using `generate()` API
In the example [recognize.py](./recognize.py), we show a basic use case for a Whisper model to conduct transcription using `generate()` API, with BigDL-LLM INT4 optimizations on Intel® Arc™ A-Series Graphics.
### 1. Install
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.9
conda activate llm
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
# you can install specific ipex/torch version for your need
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
pip install datasets soundfile librosa # required by audio processing
```
### 2. Configures OneAPI environment variables
```bash
source /opt/intel/oneapi/setvars.sh
```
### 3. Run
```
python ./recognize.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --repo-id-or-data-path REPO_ID_OR_DATA_PATH --language LANGUAGE
```
Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Whisper model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openai/whisper-tiny'`.
- `--repo-id-or-data-path REPO_ID_OR_DATA_PATH`: argument defining the huggingface repo id for the audio dataset to be downloaded, or the path to the huggingface dataset folder. It is default to be `'hf-internal-testing/librispeech_asr_dummy'`.
- `--language LANGUAGE`: argument defining language to be transcribed. It is default to be `english`.
#### Sample Output
#### [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny)
```log
Inference time: xxxx s
-------------------- Output --------------------
[' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.']
```

View file

@ -0,0 +1,76 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
from bigdl.llm.transformers import AutoModelForSpeechSeq2Seq
from transformers import WhisperProcessor
from datasets import load_dataset
import intel_extension_for_pytorch as ipex
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Recognize Tokens using `generate()` API for Whisper model')
parser.add_argument('--repo-id-or-model-path', type=str, default="openai/whisper-tiny",
help='The huggingface repo id for the Whisper model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--repo-id-or-data-path', type=str,
default="hf-internal-testing/librispeech_asr_dummy",
help='The huggingface repo id for the audio dataset to be downloaded'
', or the path to the huggingface dataset folder')
parser.add_argument('--language', type=str, default="english",
help='language to be transcribed')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
dataset_path = args.repo_id_or_data_path
language = args.language
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=False)
model.half().to('xpu')
model.config.forced_decoder_ids = None
# Load processor
processor = WhisperProcessor.from_pretrained(model_path)
forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task="transcribe")
# Load dummy dataset and read audio files
ds = load_dataset(dataset_path, "clean", split="validation")
# Generate predicted tokens
with torch.inference_mode():
sample = ds[0]["audio"]
input_features = processor(sample["array"],
sampling_rate=sample["sampling_rate"],
return_tensors="pt").input_features.half().to('xpu')
st = time.time()
# if your selected model is capable of utilizing previous key/value attentions
# to enhance decoding speed, but has `"use_cache": false` in its model config,
# it is important to set `use_cache=True` explicitly in the `generate` function
# to obtain optimal performance with BigDL-LLM INT4 optimizations
predicted_ids = model.generate(input_features,
forced_decoder_ids=forced_decoder_ids)
end = time.time()
output_str = processor.batch_decode(predicted_ids, skip_special_tokens=True)
print(f'Inference time: {end-st} s')
print('-'*20, 'Output', '-'*20)
print(output_str)

View file

@ -6,7 +6,7 @@ In this directory, you will find examples on how you could apply BigDL-LLM INT4
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Recognize Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a Whisper model to conduct transcription using `generate()` API, with BigDL-LLM INT4 optimizations.
In the example [recognize.py](./recognize.py), we show a basic use case for a Whisper model to conduct transcription using `generate()` API, with BigDL-LLM INT4 optimizations.
### 1. Install
We suggest using conda to manage environment:
```bash