LLM: add whisper example for arc transformer int4 (#8749)
* add whisper example for arc int4 * fix
This commit is contained in:
		
							parent
							
								
									77844125f2
								
							
						
					
					
						commit
						d28ad8f7db
					
				
					 3 changed files with 120 additions and 1 deletions
				
			
		| 
						 | 
					@ -0,0 +1,43 @@
 | 
				
			||||||
 | 
					# Whisper
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Whisper models on any Intel® Arc™ A-Series Graphics. For illustration purposes, we utilize the [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) as a reference Whisper model.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## 0. Requirements
 | 
				
			||||||
 | 
					To run these examples with BigDL-LLM on Intel® Arc™ A-Series Graphics, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Example: Recognize Tokens using `generate()` API
 | 
				
			||||||
 | 
					In the example [recognize.py](./recognize.py), we show a basic use case for a Whisper model to conduct transcription using `generate()` API, with BigDL-LLM INT4 optimizations on Intel® Arc™ A-Series Graphics.
 | 
				
			||||||
 | 
					### 1. Install
 | 
				
			||||||
 | 
					We suggest using conda to manage environment:
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					conda create -n llm python=3.9
 | 
				
			||||||
 | 
					conda activate llm
 | 
				
			||||||
 | 
					# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
 | 
				
			||||||
 | 
					# you can install specific ipex/torch version for your need
 | 
				
			||||||
 | 
					pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
 | 
				
			||||||
 | 
					pip install datasets soundfile librosa # required by audio processing
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### 2. Configures OneAPI environment variables
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					source /opt/intel/oneapi/setvars.sh
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### 3. Run
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					python ./recognize.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --repo-id-or-data-path REPO_ID_OR_DATA_PATH --language LANGUAGE
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Arguments info:
 | 
				
			||||||
 | 
					- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Whisper model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openai/whisper-tiny'`.
 | 
				
			||||||
 | 
					- `--repo-id-or-data-path REPO_ID_OR_DATA_PATH`: argument defining the huggingface repo id for the audio dataset to be downloaded, or the path to the huggingface dataset folder. It is default to be `'hf-internal-testing/librispeech_asr_dummy'`.
 | 
				
			||||||
 | 
					- `--language LANGUAGE`: argument defining language to be transcribed. It is default to be `english`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### Sample Output
 | 
				
			||||||
 | 
					#### [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```log
 | 
				
			||||||
 | 
					Inference time: xxxx s
 | 
				
			||||||
 | 
					-------------------- Output --------------------
 | 
				
			||||||
 | 
					[' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.']
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,76 @@
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Copyright 2016 The BigDL Authors.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import torch
 | 
				
			||||||
 | 
					import time
 | 
				
			||||||
 | 
					import argparse
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from bigdl.llm.transformers import AutoModelForSpeechSeq2Seq
 | 
				
			||||||
 | 
					from transformers import WhisperProcessor
 | 
				
			||||||
 | 
					from datasets import load_dataset
 | 
				
			||||||
 | 
					import intel_extension_for_pytorch as ipex
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == '__main__':
 | 
				
			||||||
 | 
					    parser = argparse.ArgumentParser(description='Recognize Tokens using `generate()` API for Whisper model')
 | 
				
			||||||
 | 
					    parser.add_argument('--repo-id-or-model-path', type=str, default="openai/whisper-tiny",
 | 
				
			||||||
 | 
					                        help='The huggingface repo id for the Whisper model to be downloaded'
 | 
				
			||||||
 | 
					                             ', or the path to the huggingface checkpoint folder')
 | 
				
			||||||
 | 
					    parser.add_argument('--repo-id-or-data-path', type=str,
 | 
				
			||||||
 | 
					                        default="hf-internal-testing/librispeech_asr_dummy",
 | 
				
			||||||
 | 
					                        help='The huggingface repo id for the audio dataset to be downloaded'
 | 
				
			||||||
 | 
					                             ', or the path to the huggingface dataset folder')
 | 
				
			||||||
 | 
					    parser.add_argument('--language', type=str, default="english",
 | 
				
			||||||
 | 
					                        help='language to be transcribed')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    args = parser.parse_args()
 | 
				
			||||||
 | 
					    model_path = args.repo_id_or_model_path
 | 
				
			||||||
 | 
					    dataset_path = args.repo_id_or_data_path
 | 
				
			||||||
 | 
					    language = args.language
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Load model in 4 bit,
 | 
				
			||||||
 | 
					    # which convert the relevant layers in the model into INT4 format
 | 
				
			||||||
 | 
					    model = AutoModelForSpeechSeq2Seq.from_pretrained(model_path,
 | 
				
			||||||
 | 
					                                                      load_in_4bit=True,
 | 
				
			||||||
 | 
					                                                      optimize_model=False)
 | 
				
			||||||
 | 
					    model.half().to('xpu')
 | 
				
			||||||
 | 
					    model.config.forced_decoder_ids = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Load processor
 | 
				
			||||||
 | 
					    processor = WhisperProcessor.from_pretrained(model_path)
 | 
				
			||||||
 | 
					    forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task="transcribe")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Load dummy dataset and read audio files
 | 
				
			||||||
 | 
					    ds = load_dataset(dataset_path, "clean", split="validation")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Generate predicted tokens
 | 
				
			||||||
 | 
					    with torch.inference_mode():
 | 
				
			||||||
 | 
					        sample = ds[0]["audio"]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        input_features = processor(sample["array"],
 | 
				
			||||||
 | 
					                                   sampling_rate=sample["sampling_rate"],
 | 
				
			||||||
 | 
					                                   return_tensors="pt").input_features.half().to('xpu')
 | 
				
			||||||
 | 
					        st = time.time()
 | 
				
			||||||
 | 
					        # if your selected model is capable of utilizing previous key/value attentions
 | 
				
			||||||
 | 
					        # to enhance decoding speed, but has `"use_cache": false` in its model config,
 | 
				
			||||||
 | 
					        # it is important to set `use_cache=True` explicitly in the `generate` function
 | 
				
			||||||
 | 
					        # to obtain optimal performance with BigDL-LLM INT4 optimizations
 | 
				
			||||||
 | 
					        predicted_ids = model.generate(input_features,
 | 
				
			||||||
 | 
					                                       forced_decoder_ids=forced_decoder_ids)
 | 
				
			||||||
 | 
					        end = time.time()
 | 
				
			||||||
 | 
					        output_str = processor.batch_decode(predicted_ids, skip_special_tokens=True)
 | 
				
			||||||
 | 
					        print(f'Inference time: {end-st} s')
 | 
				
			||||||
 | 
					        print('-'*20, 'Output', '-'*20)
 | 
				
			||||||
 | 
					        print(output_str)
 | 
				
			||||||
| 
						 | 
					@ -6,7 +6,7 @@ In this directory, you will find examples on how you could apply BigDL-LLM INT4
 | 
				
			||||||
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
 | 
					To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Example: Recognize Tokens using `generate()` API
 | 
					## Example: Recognize Tokens using `generate()` API
 | 
				
			||||||
In the example [generate.py](./generate.py), we show a basic use case for a Whisper model to conduct transcription using `generate()` API, with BigDL-LLM INT4 optimizations.
 | 
					In the example [recognize.py](./recognize.py), we show a basic use case for a Whisper model to conduct transcription using `generate()` API, with BigDL-LLM INT4 optimizations.
 | 
				
			||||||
### 1. Install
 | 
					### 1. Install
 | 
				
			||||||
We suggest using conda to manage environment:
 | 
					We suggest using conda to manage environment:
 | 
				
			||||||
```bash
 | 
					```bash
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in a new issue