GPT-J rope optimization on xpu (#10182)
* optimize * update * fix style & move use_fuse_rope * add ipex version check * fix style * update * fix style * meet comments * address comments * fix style
This commit is contained in:
parent
f445217d02
commit
ce5840a8b7
4 changed files with 301 additions and 22 deletions
|
|
@ -776,10 +776,17 @@ def _optimize_post(model, lightweight_bmm=False):
|
||||||
# dolly-v1-6b
|
# dolly-v1-6b
|
||||||
modeling_module_name = model.__class__.__module__
|
modeling_module_name = model.__class__.__module__
|
||||||
module = importlib.import_module(modeling_module_name)
|
module = importlib.import_module(modeling_module_name)
|
||||||
from bigdl.llm.transformers.models.gptj import gptj_attention_forward
|
from bigdl.llm.transformers.models.gptj import gptj_attention_forward, gptj_model_forward,\
|
||||||
|
gptj_block_forward
|
||||||
convert_forward(model,
|
convert_forward(model,
|
||||||
module.GPTJAttention,
|
module.GPTJAttention,
|
||||||
gptj_attention_forward)
|
gptj_attention_forward)
|
||||||
|
convert_forward(model,
|
||||||
|
module.GPTJModel,
|
||||||
|
gptj_model_forward)
|
||||||
|
convert_forward(model,
|
||||||
|
module.GPTJBlock,
|
||||||
|
gptj_block_forward)
|
||||||
elif "bloom" in model.config.model_type:
|
elif "bloom" in model.config.model_type:
|
||||||
modeling_module_name = model.__class__.__module__
|
modeling_module_name = model.__class__.__module__
|
||||||
module = importlib.import_module(modeling_module_name)
|
module = importlib.import_module(modeling_module_name)
|
||||||
|
|
|
||||||
|
|
@ -90,6 +90,12 @@ def save_low_bit(self, *args, **kwargs):
|
||||||
self.to(origin_device)
|
self.to(origin_device)
|
||||||
|
|
||||||
|
|
||||||
|
def _load_pre():
|
||||||
|
from transformers import GPTJModel
|
||||||
|
from bigdl.llm.transformers.models.gptj import gptj_model_new_init
|
||||||
|
GPTJModel.__init__ = gptj_model_new_init
|
||||||
|
|
||||||
|
|
||||||
class _BaseAutoModelClass:
|
class _BaseAutoModelClass:
|
||||||
HF_MODEL = None
|
HF_MODEL = None
|
||||||
|
|
||||||
|
|
@ -399,6 +405,7 @@ class _BaseAutoModelClass:
|
||||||
offload_dir=None
|
offload_dir=None
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
|
_load_pre()
|
||||||
try:
|
try:
|
||||||
model = cls.HF_Model.from_pretrained(*args, **kwargs)
|
model = cls.HF_Model.from_pretrained(*args, **kwargs)
|
||||||
except NotImplementedError:
|
except NotImplementedError:
|
||||||
|
|
|
||||||
|
|
@ -20,8 +20,11 @@
|
||||||
import torch
|
import torch
|
||||||
from typing import Optional, Tuple, Union
|
from typing import Optional, Tuple, Union
|
||||||
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, \
|
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, \
|
||||||
apply_rotary_pos_emb, append_kv_cache
|
apply_rotary_pos_emb, append_kv_cache, apply_ipex_rotate_every_two
|
||||||
from transformers.utils.import_utils import is_torch_fx_proxy
|
from transformers.utils.import_utils import is_torch_fx_proxy
|
||||||
|
from transformers.modeling_outputs import BaseModelOutputWithPast
|
||||||
|
from transformers.models.gptj.modeling_gptj import GPTJModel
|
||||||
|
from bigdl.llm.utils.common import invalidInputError
|
||||||
|
|
||||||
|
|
||||||
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
|
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
|
||||||
|
|
@ -87,6 +90,7 @@ def gptj_attention_forward(
|
||||||
position_ids: Optional[torch.LongTensor] = None,
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
head_mask: Optional[torch.FloatTensor] = None,
|
head_mask: Optional[torch.FloatTensor] = None,
|
||||||
use_cache: Optional[bool] = False,
|
use_cache: Optional[bool] = False,
|
||||||
|
rotary_emb: Optional[Tuple]=None,
|
||||||
output_attentions: Optional[bool] = False,
|
output_attentions: Optional[bool] = False,
|
||||||
) -> Union[
|
) -> Union[
|
||||||
Tuple[torch.Tensor, Tuple[torch.Tensor]],
|
Tuple[torch.Tensor, Tuple[torch.Tensor]],
|
||||||
|
|
@ -100,30 +104,26 @@ def gptj_attention_forward(
|
||||||
key = self._split_heads(key, self.num_attention_heads, self.head_dim, True)
|
key = self._split_heads(key, self.num_attention_heads, self.head_dim, True)
|
||||||
value = self._split_heads(value, self.num_attention_heads, self.head_dim, False)
|
value = self._split_heads(value, self.num_attention_heads, self.head_dim, False)
|
||||||
|
|
||||||
if is_torch_fx_proxy(position_ids) or torch.jit.is_tracing():
|
sin, cos = rotary_emb
|
||||||
# The logic to conditionally copy to GPU could not be traced, so we do this
|
use_fuse_rope = hidden_states.device.type == "xpu" and not self.training
|
||||||
# every time in the torch.fx case
|
|
||||||
embed_positions = get_embed_positions(self.embed_positions, position_ids)
|
|
||||||
else:
|
|
||||||
embed_positions = self._get_embed_positions(position_ids)
|
|
||||||
|
|
||||||
repeated_position_ids = position_ids.unsqueeze(-1).repeat(1, 1, embed_positions.shape[-1])
|
|
||||||
sincos = torch.gather(embed_positions, 1, repeated_position_ids)
|
|
||||||
sin, cos = torch.split(sincos, sincos.shape[-1] // 2, dim=-1)
|
|
||||||
|
|
||||||
if self.rotary_dim is not None:
|
if self.rotary_dim is not None:
|
||||||
k_rot = key[:, :, :, : self.rotary_dim]
|
k_rot = key[:, :, :, : self.rotary_dim]
|
||||||
k_pass = key[:, :, :, self.rotary_dim:]
|
|
||||||
|
|
||||||
q_rot = query[:, :, :, : self.rotary_dim]
|
q_rot = query[:, :, :, : self.rotary_dim]
|
||||||
q_pass = query[:, :, :, self.rotary_dim:]
|
|
||||||
|
|
||||||
q_rot, k_rot = apply_rotary_pos_emb(q_rot, k_rot, cos, sin, position_ids, "gptj")
|
if use_fuse_rope:
|
||||||
|
apply_ipex_rotate_every_two(q_rot, k_rot, cos, sin)
|
||||||
key = torch.cat([k_rot, k_pass], dim=-1)
|
else:
|
||||||
query = torch.cat([q_rot, q_pass], dim=-1)
|
k_pass = key[:, :, :, self.rotary_dim:]
|
||||||
|
q_pass = query[:, :, :, self.rotary_dim:]
|
||||||
|
q_rot, k_rot = apply_rotary_pos_emb(q_rot, k_rot, cos, sin, position_ids, "gptj")
|
||||||
|
key = torch.cat([k_rot, k_pass], dim=-1)
|
||||||
|
query = torch.cat([q_rot, q_pass], dim=-1)
|
||||||
else:
|
else:
|
||||||
query, key = apply_rotary_pos_emb(query, key, cos, sin, position_ids, "gptj")
|
if use_fuse_rope:
|
||||||
|
apply_ipex_rotate_every_two(query, key, cos, sin)
|
||||||
|
else:
|
||||||
|
query, key = apply_rotary_pos_emb(query, key, cos, sin, position_ids, "gptj")
|
||||||
|
|
||||||
batch_size, q_len, _ = hidden_states.size()
|
batch_size, q_len, _ = hidden_states.size()
|
||||||
|
|
||||||
|
|
@ -184,3 +184,257 @@ def gptj_attention_forward(
|
||||||
outputs += (attn_weights,)
|
outputs += (attn_weights,)
|
||||||
|
|
||||||
return outputs # a, present, (attentions)
|
return outputs # a, present, (attentions)
|
||||||
|
|
||||||
|
|
||||||
|
def gptj_block_forward(
|
||||||
|
self,
|
||||||
|
hidden_states: Optional[torch.FloatTensor],
|
||||||
|
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
||||||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||||||
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||||||
|
use_cache: Optional[bool] = False,
|
||||||
|
rotary_emb: Optional[Tuple]=None,
|
||||||
|
output_attentions: Optional[bool] = False,
|
||||||
|
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
|
||||||
|
residual = hidden_states
|
||||||
|
hidden_states = self.ln_1(hidden_states)
|
||||||
|
attn_outputs = self.attn(
|
||||||
|
hidden_states=hidden_states,
|
||||||
|
layer_past=layer_past,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
position_ids=position_ids,
|
||||||
|
head_mask=head_mask,
|
||||||
|
use_cache=use_cache,
|
||||||
|
rotary_emb=rotary_emb,
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
)
|
||||||
|
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
||||||
|
outputs = attn_outputs[1:]
|
||||||
|
|
||||||
|
feed_forward_hidden_states = self.mlp(hidden_states)
|
||||||
|
hidden_states = attn_output + feed_forward_hidden_states + residual
|
||||||
|
|
||||||
|
if use_cache:
|
||||||
|
outputs = (hidden_states,) + outputs
|
||||||
|
else:
|
||||||
|
outputs = (hidden_states,) + outputs[1:]
|
||||||
|
|
||||||
|
return outputs # hidden_states, present, (attentions)
|
||||||
|
|
||||||
|
|
||||||
|
def create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor:
|
||||||
|
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim))
|
||||||
|
sinusoid_inp = torch.einsum("i , j -> i j",
|
||||||
|
torch.arange(num_pos, dtype=torch.float), inv_freq).float()
|
||||||
|
return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1)
|
||||||
|
|
||||||
|
|
||||||
|
old_init = GPTJModel.__init__
|
||||||
|
|
||||||
|
|
||||||
|
def gptj_model_new_init(self, config):
|
||||||
|
old_init(self, config)
|
||||||
|
embed_dim = config.hidden_size
|
||||||
|
rotary_dim = config.rotary_dim
|
||||||
|
pos_embd_dim = rotary_dim or embed_dim
|
||||||
|
max_positions = config.max_position_embeddings
|
||||||
|
self.embed_positions = create_sinusoidal_positions(max_positions, pos_embd_dim)
|
||||||
|
|
||||||
|
|
||||||
|
def get_new_embed_positions(position_ids, prev_embed_positions):
|
||||||
|
embed_positions = prev_embed_positions
|
||||||
|
if embed_positions.device != position_ids.device:
|
||||||
|
embed_positions = embed_positions.to(position_ids.device)
|
||||||
|
prev_embed_positions = embed_positions
|
||||||
|
return embed_positions.repeat(position_ids.shape[0], 1, 1), prev_embed_positions
|
||||||
|
|
||||||
|
|
||||||
|
def gptj_model_forward(
|
||||||
|
self,
|
||||||
|
input_ids: Optional[torch.LongTensor] = None,
|
||||||
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
||||||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||||||
|
token_type_ids: Optional[torch.LongTensor] = None,
|
||||||
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||||||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||||
|
use_cache: Optional[bool] = None,
|
||||||
|
output_attentions: Optional[bool] = None,
|
||||||
|
output_hidden_states: Optional[bool] = None,
|
||||||
|
return_dict: Optional[bool] = None,
|
||||||
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||||
|
output_attentions = output_attentions if output_attentions is not None \
|
||||||
|
else self.config.output_attentions
|
||||||
|
output_hidden_states = (
|
||||||
|
output_hidden_states if output_hidden_states is not None
|
||||||
|
else self.config.output_hidden_states
|
||||||
|
)
|
||||||
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||||
|
|
||||||
|
if input_ids is not None and inputs_embeds is not None:
|
||||||
|
invalidInputError(False,
|
||||||
|
"You cannot specify both input_ids and inputs_embeds at the same time")
|
||||||
|
elif input_ids is not None:
|
||||||
|
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
||||||
|
input_shape = input_ids.size()
|
||||||
|
input_ids = input_ids.view(-1, input_shape[-1])
|
||||||
|
batch_size = input_ids.shape[0]
|
||||||
|
elif inputs_embeds is not None:
|
||||||
|
input_shape = inputs_embeds.size()[:-1]
|
||||||
|
batch_size = inputs_embeds.shape[0]
|
||||||
|
else:
|
||||||
|
invalidInputError(False, "You have to specify either input_ids or inputs_embeds")
|
||||||
|
|
||||||
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||||||
|
|
||||||
|
if token_type_ids is not None:
|
||||||
|
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
||||||
|
|
||||||
|
if past_key_values is None:
|
||||||
|
past_length = 0
|
||||||
|
past_key_values = tuple([None] * len(self.h))
|
||||||
|
else:
|
||||||
|
past_length = past_key_values[0][0].size(-2)
|
||||||
|
|
||||||
|
if position_ids is None:
|
||||||
|
position_ids = torch.arange(past_length, input_shape[-1] + past_length,
|
||||||
|
dtype=torch.long, device=device)
|
||||||
|
position_ids = position_ids.unsqueeze(0)
|
||||||
|
|
||||||
|
# Attention mask.
|
||||||
|
if attention_mask is not None:
|
||||||
|
if batch_size <= 0:
|
||||||
|
invalidInputError(False, "batch_size has to be defined and > 0")
|
||||||
|
attention_mask = attention_mask.view(batch_size, -1)
|
||||||
|
# We create a 3D attention mask from a 2D tensor mask.
|
||||||
|
# Sizes are [batch_size, 1, 1, to_seq_length]
|
||||||
|
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
||||||
|
# this attention mask is more simple than the triangular masking of causal attention
|
||||||
|
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
||||||
|
attention_mask = attention_mask[:, None, None, :]
|
||||||
|
|
||||||
|
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
||||||
|
# masked positions, this operation will create a tensor which is 0.0 for
|
||||||
|
# positions we want to attend and the dtype's smallest value for masked positions.
|
||||||
|
# Since we are adding it to the raw scores before the softmax, this is
|
||||||
|
# effectively the same as removing these entirely.
|
||||||
|
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
||||||
|
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
||||||
|
|
||||||
|
# Prepare head mask if needed
|
||||||
|
# 1.0 in head_mask indicate we keep the head
|
||||||
|
# attention_probs has shape bsz x num_attention_heads x N x N
|
||||||
|
# head_mask has shape n_layer x batch x num_attention_heads x N x N
|
||||||
|
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
||||||
|
|
||||||
|
if inputs_embeds is None:
|
||||||
|
inputs_embeds = self.wte(input_ids)
|
||||||
|
|
||||||
|
hidden_states = inputs_embeds
|
||||||
|
|
||||||
|
if token_type_ids is not None:
|
||||||
|
token_type_embeds = self.wte(token_type_ids)
|
||||||
|
hidden_states = hidden_states + token_type_embeds
|
||||||
|
|
||||||
|
hidden_states = self.drop(hidden_states)
|
||||||
|
|
||||||
|
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
|
||||||
|
|
||||||
|
if self.gradient_checkpointing and self.training:
|
||||||
|
if use_cache:
|
||||||
|
logger.warning_once(
|
||||||
|
"`use_cache=True` is incompatible with gradient checkpointing."
|
||||||
|
"Setting `use_cache=False`..."
|
||||||
|
)
|
||||||
|
use_cache = False
|
||||||
|
|
||||||
|
presents = () if use_cache else None
|
||||||
|
all_self_attentions = () if output_attentions else None
|
||||||
|
all_hidden_states = () if output_hidden_states else None
|
||||||
|
|
||||||
|
# Repeat cos sin here, call only once for each token.
|
||||||
|
# If put this to attension forward, it will generate too many times.
|
||||||
|
if is_torch_fx_proxy(position_ids) or torch.jit.is_tracing():
|
||||||
|
# The logic to conditionally copy to GPU could not be traced, so we do this
|
||||||
|
# every time in the torch.fx case
|
||||||
|
embed_positions = get_embed_positions(self.embed_positions, position_ids)
|
||||||
|
else:
|
||||||
|
embed_positions, self.embed_positions = get_new_embed_positions(position_ids,
|
||||||
|
self.embed_positions)
|
||||||
|
|
||||||
|
repeated_position_ids = position_ids.unsqueeze(-1).repeat(1, 1, embed_positions.shape[-1])
|
||||||
|
sincos = torch.gather(embed_positions, 1, repeated_position_ids)
|
||||||
|
sin, cos = torch.split(sincos, sincos.shape[-1] // 2, dim=-1)
|
||||||
|
sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3)
|
||||||
|
cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3)
|
||||||
|
|
||||||
|
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
||||||
|
# Model parallel
|
||||||
|
if self.model_parallel:
|
||||||
|
torch.cuda.set_device(hidden_states.device)
|
||||||
|
# Ensure layer_past is on same device as hidden_states (might not be correct)
|
||||||
|
if layer_past is not None:
|
||||||
|
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
|
||||||
|
# Ensure that attention_mask is always on the same device as hidden_states
|
||||||
|
if attention_mask is not None:
|
||||||
|
attention_mask = attention_mask.to(hidden_states.device)
|
||||||
|
if isinstance(head_mask, torch.Tensor):
|
||||||
|
head_mask = head_mask.to(hidden_states.device)
|
||||||
|
if output_hidden_states:
|
||||||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||||
|
|
||||||
|
if self.gradient_checkpointing and self.training:
|
||||||
|
outputs = self._gradient_checkpointing_func(
|
||||||
|
block.__call__,
|
||||||
|
hidden_states,
|
||||||
|
None,
|
||||||
|
attention_mask,
|
||||||
|
position_ids,
|
||||||
|
head_mask[i],
|
||||||
|
use_cache,
|
||||||
|
output_attentions,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
outputs = block(
|
||||||
|
hidden_states=hidden_states,
|
||||||
|
layer_past=layer_past,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
position_ids=position_ids,
|
||||||
|
head_mask=head_mask[i],
|
||||||
|
use_cache=use_cache,
|
||||||
|
rotary_emb=(sin, cos),
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
)
|
||||||
|
|
||||||
|
hidden_states = outputs[0]
|
||||||
|
if use_cache is True:
|
||||||
|
presents = presents + (outputs[1],)
|
||||||
|
|
||||||
|
if output_attentions:
|
||||||
|
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
||||||
|
|
||||||
|
# Model Parallel: If it's the last layer for that device, put things on the next device
|
||||||
|
if self.model_parallel:
|
||||||
|
for k, v in self.device_map.items():
|
||||||
|
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
||||||
|
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
||||||
|
|
||||||
|
hidden_states = self.ln_f(hidden_states)
|
||||||
|
|
||||||
|
hidden_states = hidden_states.view(output_shape)
|
||||||
|
# Add last hidden state
|
||||||
|
if output_hidden_states:
|
||||||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||||
|
|
||||||
|
if not return_dict:
|
||||||
|
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions]
|
||||||
|
if v is not None)
|
||||||
|
|
||||||
|
return BaseModelOutputWithPast(
|
||||||
|
last_hidden_state=hidden_states,
|
||||||
|
past_key_values=presents,
|
||||||
|
hidden_states=all_hidden_states,
|
||||||
|
attentions=all_self_attentions,
|
||||||
|
)
|
||||||
|
|
|
||||||
|
|
@ -153,8 +153,6 @@ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, model_family):
|
||||||
k_embed = (k * cos) + (rotate_half(k) * sin)
|
k_embed = (k * cos) + (rotate_half(k) * sin)
|
||||||
return q_embed, k_embed
|
return q_embed, k_embed
|
||||||
elif model_family == "gptj":
|
elif model_family == "gptj":
|
||||||
cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3)
|
|
||||||
sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3)
|
|
||||||
q_embed = (q * cos) + (rotate_every_two(q) * sin)
|
q_embed = (q * cos) + (rotate_every_two(q) * sin)
|
||||||
k_embed = (k * cos) + (rotate_every_two(k) * sin)
|
k_embed = (k * cos) + (rotate_every_two(k) * sin)
|
||||||
return q_embed, k_embed
|
return q_embed, k_embed
|
||||||
|
|
@ -163,6 +161,19 @@ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, model_family):
|
||||||
f"{model_family} is not supported.")
|
f"{model_family} is not supported.")
|
||||||
|
|
||||||
|
|
||||||
|
def apply_ipex_rotate_every_two(q, k, cos, sin):
|
||||||
|
# ipex's apply_rotary_embedding_two_qk can change the origin storage,
|
||||||
|
# so q/k will get the result directly.
|
||||||
|
from bigdl.llm.transformers.utils import get_ipex_version
|
||||||
|
if get_ipex_version() >= "2.1.10+xpu":
|
||||||
|
torch.ops.torch_ipex.apply_rotary_embedding_two_qk(
|
||||||
|
q, k, sin, cos, q, k
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
torch.ops.torch_ipex.apply_rotary_embedding(q, sin, cos, q)
|
||||||
|
torch.ops.torch_ipex.apply_rotary_embedding(k, sin, cos, k)
|
||||||
|
|
||||||
|
|
||||||
def apply_rotary_pos_emb_no_cache_xpu(q, k, position_ids, model_family):
|
def apply_rotary_pos_emb_no_cache_xpu(q, k, position_ids, model_family):
|
||||||
if q.device.type != "xpu":
|
if q.device.type != "xpu":
|
||||||
invalidInputError(False,
|
invalidInputError(False,
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue