diff --git a/python/llm/src/bigdl/llm/transformers/convert.py b/python/llm/src/bigdl/llm/transformers/convert.py index 824b02ba..e0e593a8 100644 --- a/python/llm/src/bigdl/llm/transformers/convert.py +++ b/python/llm/src/bigdl/llm/transformers/convert.py @@ -776,10 +776,17 @@ def _optimize_post(model, lightweight_bmm=False): # dolly-v1-6b modeling_module_name = model.__class__.__module__ module = importlib.import_module(modeling_module_name) - from bigdl.llm.transformers.models.gptj import gptj_attention_forward + from bigdl.llm.transformers.models.gptj import gptj_attention_forward, gptj_model_forward,\ + gptj_block_forward convert_forward(model, module.GPTJAttention, gptj_attention_forward) + convert_forward(model, + module.GPTJModel, + gptj_model_forward) + convert_forward(model, + module.GPTJBlock, + gptj_block_forward) elif "bloom" in model.config.model_type: modeling_module_name = model.__class__.__module__ module = importlib.import_module(modeling_module_name) diff --git a/python/llm/src/bigdl/llm/transformers/model.py b/python/llm/src/bigdl/llm/transformers/model.py index 043c4638..8a495991 100644 --- a/python/llm/src/bigdl/llm/transformers/model.py +++ b/python/llm/src/bigdl/llm/transformers/model.py @@ -90,6 +90,12 @@ def save_low_bit(self, *args, **kwargs): self.to(origin_device) +def _load_pre(): + from transformers import GPTJModel + from bigdl.llm.transformers.models.gptj import gptj_model_new_init + GPTJModel.__init__ = gptj_model_new_init + + class _BaseAutoModelClass: HF_MODEL = None @@ -399,6 +405,7 @@ class _BaseAutoModelClass: offload_dir=None ) else: + _load_pre() try: model = cls.HF_Model.from_pretrained(*args, **kwargs) except NotImplementedError: diff --git a/python/llm/src/bigdl/llm/transformers/models/gptj.py b/python/llm/src/bigdl/llm/transformers/models/gptj.py index 5e0622d4..9c872fe7 100644 --- a/python/llm/src/bigdl/llm/transformers/models/gptj.py +++ b/python/llm/src/bigdl/llm/transformers/models/gptj.py @@ -20,8 +20,11 @@ import torch from typing import Optional, Tuple, Union from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, \ - apply_rotary_pos_emb, append_kv_cache + apply_rotary_pos_emb, append_kv_cache, apply_ipex_rotate_every_two from transformers.utils.import_utils import is_torch_fx_proxy +from transformers.modeling_outputs import BaseModelOutputWithPast +from transformers.models.gptj.modeling_gptj import GPTJModel +from bigdl.llm.utils.common import invalidInputError KV_CACHE_ALLOC_BLOCK_LENGTH = 256 @@ -87,6 +90,7 @@ def gptj_attention_forward( position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = False, + rotary_emb: Optional[Tuple]=None, output_attentions: Optional[bool] = False, ) -> Union[ Tuple[torch.Tensor, Tuple[torch.Tensor]], @@ -100,30 +104,26 @@ def gptj_attention_forward( key = self._split_heads(key, self.num_attention_heads, self.head_dim, True) value = self._split_heads(value, self.num_attention_heads, self.head_dim, False) - if is_torch_fx_proxy(position_ids) or torch.jit.is_tracing(): - # The logic to conditionally copy to GPU could not be traced, so we do this - # every time in the torch.fx case - embed_positions = get_embed_positions(self.embed_positions, position_ids) - else: - embed_positions = self._get_embed_positions(position_ids) - - repeated_position_ids = position_ids.unsqueeze(-1).repeat(1, 1, embed_positions.shape[-1]) - sincos = torch.gather(embed_positions, 1, repeated_position_ids) - sin, cos = torch.split(sincos, sincos.shape[-1] // 2, dim=-1) + sin, cos = rotary_emb + use_fuse_rope = hidden_states.device.type == "xpu" and not self.training if self.rotary_dim is not None: k_rot = key[:, :, :, : self.rotary_dim] - k_pass = key[:, :, :, self.rotary_dim:] - q_rot = query[:, :, :, : self.rotary_dim] - q_pass = query[:, :, :, self.rotary_dim:] - q_rot, k_rot = apply_rotary_pos_emb(q_rot, k_rot, cos, sin, position_ids, "gptj") - - key = torch.cat([k_rot, k_pass], dim=-1) - query = torch.cat([q_rot, q_pass], dim=-1) + if use_fuse_rope: + apply_ipex_rotate_every_two(q_rot, k_rot, cos, sin) + else: + k_pass = key[:, :, :, self.rotary_dim:] + q_pass = query[:, :, :, self.rotary_dim:] + q_rot, k_rot = apply_rotary_pos_emb(q_rot, k_rot, cos, sin, position_ids, "gptj") + key = torch.cat([k_rot, k_pass], dim=-1) + query = torch.cat([q_rot, q_pass], dim=-1) else: - query, key = apply_rotary_pos_emb(query, key, cos, sin, position_ids, "gptj") + if use_fuse_rope: + apply_ipex_rotate_every_two(query, key, cos, sin) + else: + query, key = apply_rotary_pos_emb(query, key, cos, sin, position_ids, "gptj") batch_size, q_len, _ = hidden_states.size() @@ -184,3 +184,257 @@ def gptj_attention_forward( outputs += (attn_weights,) return outputs # a, present, (attentions) + + +def gptj_block_forward( + self, + hidden_states: Optional[torch.FloatTensor], + layer_past: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = False, + rotary_emb: Optional[Tuple]=None, + output_attentions: Optional[bool] = False, +) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]: + residual = hidden_states + hidden_states = self.ln_1(hidden_states) + attn_outputs = self.attn( + hidden_states=hidden_states, + layer_past=layer_past, + attention_mask=attention_mask, + position_ids=position_ids, + head_mask=head_mask, + use_cache=use_cache, + rotary_emb=rotary_emb, + output_attentions=output_attentions, + ) + attn_output = attn_outputs[0] # output_attn: a, present, (attentions) + outputs = attn_outputs[1:] + + feed_forward_hidden_states = self.mlp(hidden_states) + hidden_states = attn_output + feed_forward_hidden_states + residual + + if use_cache: + outputs = (hidden_states,) + outputs + else: + outputs = (hidden_states,) + outputs[1:] + + return outputs # hidden_states, present, (attentions) + + +def create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor: + inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim)) + sinusoid_inp = torch.einsum("i , j -> i j", + torch.arange(num_pos, dtype=torch.float), inv_freq).float() + return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1) + + +old_init = GPTJModel.__init__ + + +def gptj_model_new_init(self, config): + old_init(self, config) + embed_dim = config.hidden_size + rotary_dim = config.rotary_dim + pos_embd_dim = rotary_dim or embed_dim + max_positions = config.max_position_embeddings + self.embed_positions = create_sinusoidal_positions(max_positions, pos_embd_dim) + + +def get_new_embed_positions(position_ids, prev_embed_positions): + embed_positions = prev_embed_positions + if embed_positions.device != position_ids.device: + embed_positions = embed_positions.to(position_ids.device) + prev_embed_positions = embed_positions + return embed_positions.repeat(position_ids.shape[0], 1, 1), prev_embed_positions + + +def gptj_model_forward( + self, + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, +) -> Union[Tuple, BaseModelOutputWithPast]: + output_attentions = output_attentions if output_attentions is not None \ + else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None + else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + invalidInputError(False, + "You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + batch_size = input_ids.shape[0] + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + batch_size = inputs_embeds.shape[0] + else: + invalidInputError(False, "You have to specify either input_ids or inputs_embeds") + + device = input_ids.device if input_ids is not None else inputs_embeds.device + + if token_type_ids is not None: + token_type_ids = token_type_ids.view(-1, input_shape[-1]) + + if past_key_values is None: + past_length = 0 + past_key_values = tuple([None] * len(self.h)) + else: + past_length = past_key_values[0][0].size(-2) + + if position_ids is None: + position_ids = torch.arange(past_length, input_shape[-1] + past_length, + dtype=torch.long, device=device) + position_ids = position_ids.unsqueeze(0) + + # Attention mask. + if attention_mask is not None: + if batch_size <= 0: + invalidInputError(False, "batch_size has to be defined and > 0") + attention_mask = attention_mask.view(batch_size, -1) + # We create a 3D attention mask from a 2D tensor mask. + # Sizes are [batch_size, 1, 1, to_seq_length] + # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] + # this attention mask is more simple than the triangular masking of causal attention + # used in OpenAI GPT, we just need to prepare the broadcast dimension here. + attention_mask = attention_mask[:, None, None, :] + + # Since attention_mask is 1.0 for positions we want to attend and 0.0 for + # masked positions, this operation will create a tensor which is 0.0 for + # positions we want to attend and the dtype's smallest value for masked positions. + # Since we are adding it to the raw scores before the softmax, this is + # effectively the same as removing these entirely. + attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility + attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x num_attention_heads x N x N + # head_mask has shape n_layer x batch x num_attention_heads x N x N + head_mask = self.get_head_mask(head_mask, self.config.n_layer) + + if inputs_embeds is None: + inputs_embeds = self.wte(input_ids) + + hidden_states = inputs_embeds + + if token_type_ids is not None: + token_type_embeds = self.wte(token_type_ids) + hidden_states = hidden_states + token_type_embeds + + hidden_states = self.drop(hidden_states) + + output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),) + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing." + "Setting `use_cache=False`..." + ) + use_cache = False + + presents = () if use_cache else None + all_self_attentions = () if output_attentions else None + all_hidden_states = () if output_hidden_states else None + + # Repeat cos sin here, call only once for each token. + # If put this to attension forward, it will generate too many times. + if is_torch_fx_proxy(position_ids) or torch.jit.is_tracing(): + # The logic to conditionally copy to GPU could not be traced, so we do this + # every time in the torch.fx case + embed_positions = get_embed_positions(self.embed_positions, position_ids) + else: + embed_positions, self.embed_positions = get_new_embed_positions(position_ids, + self.embed_positions) + + repeated_position_ids = position_ids.unsqueeze(-1).repeat(1, 1, embed_positions.shape[-1]) + sincos = torch.gather(embed_positions, 1, repeated_position_ids) + sin, cos = torch.split(sincos, sincos.shape[-1] // 2, dim=-1) + sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3) + cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3) + + for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): + # Model parallel + if self.model_parallel: + torch.cuda.set_device(hidden_states.device) + # Ensure layer_past is on same device as hidden_states (might not be correct) + if layer_past is not None: + layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past) + # Ensure that attention_mask is always on the same device as hidden_states + if attention_mask is not None: + attention_mask = attention_mask.to(hidden_states.device) + if isinstance(head_mask, torch.Tensor): + head_mask = head_mask.to(hidden_states.device) + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if self.gradient_checkpointing and self.training: + outputs = self._gradient_checkpointing_func( + block.__call__, + hidden_states, + None, + attention_mask, + position_ids, + head_mask[i], + use_cache, + output_attentions, + ) + else: + outputs = block( + hidden_states=hidden_states, + layer_past=layer_past, + attention_mask=attention_mask, + position_ids=position_ids, + head_mask=head_mask[i], + use_cache=use_cache, + rotary_emb=(sin, cos), + output_attentions=output_attentions, + ) + + hidden_states = outputs[0] + if use_cache is True: + presents = presents + (outputs[1],) + + if output_attentions: + all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) + + # Model Parallel: If it's the last layer for that device, put things on the next device + if self.model_parallel: + for k, v in self.device_map.items(): + if i == v[-1] and "cuda:" + str(k) != self.last_device: + hidden_states = hidden_states.to("cuda:" + str(k + 1)) + + hidden_states = self.ln_f(hidden_states) + + hidden_states = hidden_states.view(output_shape) + # Add last hidden state + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] + if v is not None) + + return BaseModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=presents, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) diff --git a/python/llm/src/bigdl/llm/transformers/models/utils.py b/python/llm/src/bigdl/llm/transformers/models/utils.py index 6104b510..f14473f9 100644 --- a/python/llm/src/bigdl/llm/transformers/models/utils.py +++ b/python/llm/src/bigdl/llm/transformers/models/utils.py @@ -153,8 +153,6 @@ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, model_family): k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed elif model_family == "gptj": - cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3) - sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3) q_embed = (q * cos) + (rotate_every_two(q) * sin) k_embed = (k * cos) + (rotate_every_two(k) * sin) return q_embed, k_embed @@ -163,6 +161,19 @@ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, model_family): f"{model_family} is not supported.") +def apply_ipex_rotate_every_two(q, k, cos, sin): + # ipex's apply_rotary_embedding_two_qk can change the origin storage, + # so q/k will get the result directly. + from bigdl.llm.transformers.utils import get_ipex_version + if get_ipex_version() >= "2.1.10+xpu": + torch.ops.torch_ipex.apply_rotary_embedding_two_qk( + q, k, sin, cos, q, k + ) + else: + torch.ops.torch_ipex.apply_rotary_embedding(q, sin, cos, q) + torch.ops.torch_ipex.apply_rotary_embedding(k, sin, cos, k) + + def apply_rotary_pos_emb_no_cache_xpu(q, k, position_ids, model_family): if q.device.type != "xpu": invalidInputError(False,