GPT-J rope optimization on xpu (#10182)
* optimize * update * fix style & move use_fuse_rope * add ipex version check * fix style * update * fix style * meet comments * address comments * fix style
This commit is contained in:
		
							parent
							
								
									f445217d02
								
							
						
					
					
						commit
						ce5840a8b7
					
				
					 4 changed files with 301 additions and 22 deletions
				
			
		| 
						 | 
				
			
			@ -776,10 +776,17 @@ def _optimize_post(model, lightweight_bmm=False):
 | 
			
		|||
        # dolly-v1-6b
 | 
			
		||||
        modeling_module_name = model.__class__.__module__
 | 
			
		||||
        module = importlib.import_module(modeling_module_name)
 | 
			
		||||
        from bigdl.llm.transformers.models.gptj import gptj_attention_forward
 | 
			
		||||
        from bigdl.llm.transformers.models.gptj import gptj_attention_forward, gptj_model_forward,\
 | 
			
		||||
            gptj_block_forward
 | 
			
		||||
        convert_forward(model,
 | 
			
		||||
                        module.GPTJAttention,
 | 
			
		||||
                        gptj_attention_forward)
 | 
			
		||||
        convert_forward(model,
 | 
			
		||||
                        module.GPTJModel,
 | 
			
		||||
                        gptj_model_forward)
 | 
			
		||||
        convert_forward(model,
 | 
			
		||||
                        module.GPTJBlock,
 | 
			
		||||
                        gptj_block_forward)
 | 
			
		||||
    elif "bloom" in model.config.model_type:
 | 
			
		||||
        modeling_module_name = model.__class__.__module__
 | 
			
		||||
        module = importlib.import_module(modeling_module_name)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -90,6 +90,12 @@ def save_low_bit(self, *args, **kwargs):
 | 
			
		|||
        self.to(origin_device)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _load_pre():
 | 
			
		||||
    from transformers import GPTJModel
 | 
			
		||||
    from bigdl.llm.transformers.models.gptj import gptj_model_new_init
 | 
			
		||||
    GPTJModel.__init__ = gptj_model_new_init
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class _BaseAutoModelClass:
 | 
			
		||||
    HF_MODEL = None
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -399,6 +405,7 @@ class _BaseAutoModelClass:
 | 
			
		|||
                offload_dir=None
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            _load_pre()
 | 
			
		||||
            try:
 | 
			
		||||
                model = cls.HF_Model.from_pretrained(*args, **kwargs)
 | 
			
		||||
            except NotImplementedError:
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -20,8 +20,11 @@
 | 
			
		|||
import torch
 | 
			
		||||
from typing import Optional, Tuple, Union
 | 
			
		||||
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, \
 | 
			
		||||
    apply_rotary_pos_emb, append_kv_cache
 | 
			
		||||
    apply_rotary_pos_emb, append_kv_cache, apply_ipex_rotate_every_two
 | 
			
		||||
from transformers.utils.import_utils import is_torch_fx_proxy
 | 
			
		||||
from transformers.modeling_outputs import BaseModelOutputWithPast
 | 
			
		||||
from transformers.models.gptj.modeling_gptj import GPTJModel
 | 
			
		||||
from bigdl.llm.utils.common import invalidInputError
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
 | 
			
		||||
| 
						 | 
				
			
			@ -87,6 +90,7 @@ def gptj_attention_forward(
 | 
			
		|||
    position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    head_mask: Optional[torch.FloatTensor] = None,
 | 
			
		||||
    use_cache: Optional[bool] = False,
 | 
			
		||||
    rotary_emb: Optional[Tuple]=None,
 | 
			
		||||
    output_attentions: Optional[bool] = False,
 | 
			
		||||
) -> Union[
 | 
			
		||||
    Tuple[torch.Tensor, Tuple[torch.Tensor]],
 | 
			
		||||
| 
						 | 
				
			
			@ -100,30 +104,26 @@ def gptj_attention_forward(
 | 
			
		|||
    key = self._split_heads(key, self.num_attention_heads, self.head_dim, True)
 | 
			
		||||
    value = self._split_heads(value, self.num_attention_heads, self.head_dim, False)
 | 
			
		||||
 | 
			
		||||
    if is_torch_fx_proxy(position_ids) or torch.jit.is_tracing():
 | 
			
		||||
        # The logic to conditionally copy to GPU could not be traced, so we do this
 | 
			
		||||
        # every time in the torch.fx case
 | 
			
		||||
        embed_positions = get_embed_positions(self.embed_positions, position_ids)
 | 
			
		||||
    else:
 | 
			
		||||
        embed_positions = self._get_embed_positions(position_ids)
 | 
			
		||||
 | 
			
		||||
    repeated_position_ids = position_ids.unsqueeze(-1).repeat(1, 1, embed_positions.shape[-1])
 | 
			
		||||
    sincos = torch.gather(embed_positions, 1, repeated_position_ids)
 | 
			
		||||
    sin, cos = torch.split(sincos, sincos.shape[-1] // 2, dim=-1)
 | 
			
		||||
    sin, cos = rotary_emb
 | 
			
		||||
    use_fuse_rope = hidden_states.device.type == "xpu" and not self.training
 | 
			
		||||
 | 
			
		||||
    if self.rotary_dim is not None:
 | 
			
		||||
        k_rot = key[:, :, :, : self.rotary_dim]
 | 
			
		||||
        k_pass = key[:, :, :, self.rotary_dim:]
 | 
			
		||||
 | 
			
		||||
        q_rot = query[:, :, :, : self.rotary_dim]
 | 
			
		||||
        q_pass = query[:, :, :, self.rotary_dim:]
 | 
			
		||||
 | 
			
		||||
        q_rot, k_rot = apply_rotary_pos_emb(q_rot, k_rot, cos, sin, position_ids, "gptj")
 | 
			
		||||
 | 
			
		||||
        key = torch.cat([k_rot, k_pass], dim=-1)
 | 
			
		||||
        query = torch.cat([q_rot, q_pass], dim=-1)
 | 
			
		||||
        if use_fuse_rope:
 | 
			
		||||
            apply_ipex_rotate_every_two(q_rot, k_rot, cos, sin)
 | 
			
		||||
        else:
 | 
			
		||||
            k_pass = key[:, :, :, self.rotary_dim:]
 | 
			
		||||
            q_pass = query[:, :, :, self.rotary_dim:]
 | 
			
		||||
            q_rot, k_rot = apply_rotary_pos_emb(q_rot, k_rot, cos, sin, position_ids, "gptj")
 | 
			
		||||
            key = torch.cat([k_rot, k_pass], dim=-1)
 | 
			
		||||
            query = torch.cat([q_rot, q_pass], dim=-1)
 | 
			
		||||
    else:
 | 
			
		||||
        query, key = apply_rotary_pos_emb(query, key, cos, sin, position_ids, "gptj")
 | 
			
		||||
        if use_fuse_rope:
 | 
			
		||||
            apply_ipex_rotate_every_two(query, key, cos, sin)
 | 
			
		||||
        else:
 | 
			
		||||
            query, key = apply_rotary_pos_emb(query, key, cos, sin, position_ids, "gptj")
 | 
			
		||||
 | 
			
		||||
    batch_size, q_len, _ = hidden_states.size()
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -184,3 +184,257 @@ def gptj_attention_forward(
 | 
			
		|||
        outputs += (attn_weights,)
 | 
			
		||||
 | 
			
		||||
    return outputs  # a, present, (attentions)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def gptj_block_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    hidden_states: Optional[torch.FloatTensor],
 | 
			
		||||
    layer_past: Optional[Tuple[torch.Tensor]] = None,
 | 
			
		||||
    attention_mask: Optional[torch.FloatTensor] = None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    head_mask: Optional[torch.FloatTensor] = None,
 | 
			
		||||
    use_cache: Optional[bool] = False,
 | 
			
		||||
    rotary_emb: Optional[Tuple]=None,
 | 
			
		||||
    output_attentions: Optional[bool] = False,
 | 
			
		||||
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
 | 
			
		||||
    residual = hidden_states
 | 
			
		||||
    hidden_states = self.ln_1(hidden_states)
 | 
			
		||||
    attn_outputs = self.attn(
 | 
			
		||||
        hidden_states=hidden_states,
 | 
			
		||||
        layer_past=layer_past,
 | 
			
		||||
        attention_mask=attention_mask,
 | 
			
		||||
        position_ids=position_ids,
 | 
			
		||||
        head_mask=head_mask,
 | 
			
		||||
        use_cache=use_cache,
 | 
			
		||||
        rotary_emb=rotary_emb,
 | 
			
		||||
        output_attentions=output_attentions,
 | 
			
		||||
    )
 | 
			
		||||
    attn_output = attn_outputs[0]  # output_attn: a, present, (attentions)
 | 
			
		||||
    outputs = attn_outputs[1:]
 | 
			
		||||
 | 
			
		||||
    feed_forward_hidden_states = self.mlp(hidden_states)
 | 
			
		||||
    hidden_states = attn_output + feed_forward_hidden_states + residual
 | 
			
		||||
 | 
			
		||||
    if use_cache:
 | 
			
		||||
        outputs = (hidden_states,) + outputs
 | 
			
		||||
    else:
 | 
			
		||||
        outputs = (hidden_states,) + outputs[1:]
 | 
			
		||||
 | 
			
		||||
    return outputs  # hidden_states, present, (attentions)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor:
 | 
			
		||||
    inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim))
 | 
			
		||||
    sinusoid_inp = torch.einsum("i , j -> i j",
 | 
			
		||||
                                torch.arange(num_pos, dtype=torch.float), inv_freq).float()
 | 
			
		||||
    return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
old_init = GPTJModel.__init__
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def gptj_model_new_init(self, config):
 | 
			
		||||
    old_init(self, config)
 | 
			
		||||
    embed_dim = config.hidden_size
 | 
			
		||||
    rotary_dim = config.rotary_dim
 | 
			
		||||
    pos_embd_dim = rotary_dim or embed_dim
 | 
			
		||||
    max_positions = config.max_position_embeddings
 | 
			
		||||
    self.embed_positions = create_sinusoidal_positions(max_positions, pos_embd_dim)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def get_new_embed_positions(position_ids, prev_embed_positions):
 | 
			
		||||
    embed_positions = prev_embed_positions
 | 
			
		||||
    if embed_positions.device != position_ids.device:
 | 
			
		||||
        embed_positions = embed_positions.to(position_ids.device)
 | 
			
		||||
        prev_embed_positions = embed_positions
 | 
			
		||||
    return embed_positions.repeat(position_ids.shape[0], 1, 1), prev_embed_positions
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def gptj_model_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    input_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
 | 
			
		||||
    attention_mask: Optional[torch.FloatTensor] = None,
 | 
			
		||||
    token_type_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    head_mask: Optional[torch.FloatTensor] = None,
 | 
			
		||||
    inputs_embeds: Optional[torch.FloatTensor] = None,
 | 
			
		||||
    use_cache: Optional[bool] = None,
 | 
			
		||||
    output_attentions: Optional[bool] = None,
 | 
			
		||||
    output_hidden_states: Optional[bool] = None,
 | 
			
		||||
    return_dict: Optional[bool] = None,
 | 
			
		||||
) -> Union[Tuple, BaseModelOutputWithPast]:
 | 
			
		||||
    output_attentions = output_attentions if output_attentions is not None \
 | 
			
		||||
        else self.config.output_attentions
 | 
			
		||||
    output_hidden_states = (
 | 
			
		||||
        output_hidden_states if output_hidden_states is not None
 | 
			
		||||
        else self.config.output_hidden_states
 | 
			
		||||
    )
 | 
			
		||||
    use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
			
		||||
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
 | 
			
		||||
 | 
			
		||||
    if input_ids is not None and inputs_embeds is not None:
 | 
			
		||||
        invalidInputError(False,
 | 
			
		||||
                          "You cannot specify both input_ids and inputs_embeds at the same time")
 | 
			
		||||
    elif input_ids is not None:
 | 
			
		||||
        self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
 | 
			
		||||
        input_shape = input_ids.size()
 | 
			
		||||
        input_ids = input_ids.view(-1, input_shape[-1])
 | 
			
		||||
        batch_size = input_ids.shape[0]
 | 
			
		||||
    elif inputs_embeds is not None:
 | 
			
		||||
        input_shape = inputs_embeds.size()[:-1]
 | 
			
		||||
        batch_size = inputs_embeds.shape[0]
 | 
			
		||||
    else:
 | 
			
		||||
        invalidInputError(False, "You have to specify either input_ids or inputs_embeds")
 | 
			
		||||
 | 
			
		||||
    device = input_ids.device if input_ids is not None else inputs_embeds.device
 | 
			
		||||
 | 
			
		||||
    if token_type_ids is not None:
 | 
			
		||||
        token_type_ids = token_type_ids.view(-1, input_shape[-1])
 | 
			
		||||
 | 
			
		||||
    if past_key_values is None:
 | 
			
		||||
        past_length = 0
 | 
			
		||||
        past_key_values = tuple([None] * len(self.h))
 | 
			
		||||
    else:
 | 
			
		||||
        past_length = past_key_values[0][0].size(-2)
 | 
			
		||||
 | 
			
		||||
    if position_ids is None:
 | 
			
		||||
        position_ids = torch.arange(past_length, input_shape[-1] + past_length,
 | 
			
		||||
                                    dtype=torch.long, device=device)
 | 
			
		||||
        position_ids = position_ids.unsqueeze(0)
 | 
			
		||||
 | 
			
		||||
    # Attention mask.
 | 
			
		||||
    if attention_mask is not None:
 | 
			
		||||
        if batch_size <= 0:
 | 
			
		||||
            invalidInputError(False, "batch_size has to be defined and > 0")
 | 
			
		||||
        attention_mask = attention_mask.view(batch_size, -1)
 | 
			
		||||
        # We create a 3D attention mask from a 2D tensor mask.
 | 
			
		||||
        # Sizes are [batch_size, 1, 1, to_seq_length]
 | 
			
		||||
        # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
 | 
			
		||||
        # this attention mask is more simple than the triangular masking of causal attention
 | 
			
		||||
        # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
 | 
			
		||||
        attention_mask = attention_mask[:, None, None, :]
 | 
			
		||||
 | 
			
		||||
        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
 | 
			
		||||
        # masked positions, this operation will create a tensor which is 0.0 for
 | 
			
		||||
        # positions we want to attend and the dtype's smallest value for masked positions.
 | 
			
		||||
        # Since we are adding it to the raw scores before the softmax, this is
 | 
			
		||||
        # effectively the same as removing these entirely.
 | 
			
		||||
        attention_mask = attention_mask.to(dtype=self.dtype)  # fp16 compatibility
 | 
			
		||||
        attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
 | 
			
		||||
 | 
			
		||||
    # Prepare head mask if needed
 | 
			
		||||
    # 1.0 in head_mask indicate we keep the head
 | 
			
		||||
    # attention_probs has shape bsz x num_attention_heads x N x N
 | 
			
		||||
    # head_mask has shape n_layer x batch x num_attention_heads x N x N
 | 
			
		||||
    head_mask = self.get_head_mask(head_mask, self.config.n_layer)
 | 
			
		||||
 | 
			
		||||
    if inputs_embeds is None:
 | 
			
		||||
        inputs_embeds = self.wte(input_ids)
 | 
			
		||||
 | 
			
		||||
    hidden_states = inputs_embeds
 | 
			
		||||
 | 
			
		||||
    if token_type_ids is not None:
 | 
			
		||||
        token_type_embeds = self.wte(token_type_ids)
 | 
			
		||||
        hidden_states = hidden_states + token_type_embeds
 | 
			
		||||
 | 
			
		||||
    hidden_states = self.drop(hidden_states)
 | 
			
		||||
 | 
			
		||||
    output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
 | 
			
		||||
 | 
			
		||||
    if self.gradient_checkpointing and self.training:
 | 
			
		||||
        if use_cache:
 | 
			
		||||
            logger.warning_once(
 | 
			
		||||
                "`use_cache=True` is incompatible with gradient checkpointing."
 | 
			
		||||
                "Setting `use_cache=False`..."
 | 
			
		||||
            )
 | 
			
		||||
            use_cache = False
 | 
			
		||||
 | 
			
		||||
    presents = () if use_cache else None
 | 
			
		||||
    all_self_attentions = () if output_attentions else None
 | 
			
		||||
    all_hidden_states = () if output_hidden_states else None
 | 
			
		||||
 | 
			
		||||
    # Repeat cos sin here, call only once for each token.
 | 
			
		||||
    # If put this to attension forward, it will generate too many times.
 | 
			
		||||
    if is_torch_fx_proxy(position_ids) or torch.jit.is_tracing():
 | 
			
		||||
        # The logic to conditionally copy to GPU could not be traced, so we do this
 | 
			
		||||
        # every time in the torch.fx case
 | 
			
		||||
        embed_positions = get_embed_positions(self.embed_positions, position_ids)
 | 
			
		||||
    else:
 | 
			
		||||
        embed_positions, self.embed_positions = get_new_embed_positions(position_ids,
 | 
			
		||||
                                                                        self.embed_positions)
 | 
			
		||||
 | 
			
		||||
    repeated_position_ids = position_ids.unsqueeze(-1).repeat(1, 1, embed_positions.shape[-1])
 | 
			
		||||
    sincos = torch.gather(embed_positions, 1, repeated_position_ids)
 | 
			
		||||
    sin, cos = torch.split(sincos, sincos.shape[-1] // 2, dim=-1)
 | 
			
		||||
    sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3)
 | 
			
		||||
    cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3)
 | 
			
		||||
 | 
			
		||||
    for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
 | 
			
		||||
        # Model parallel
 | 
			
		||||
        if self.model_parallel:
 | 
			
		||||
            torch.cuda.set_device(hidden_states.device)
 | 
			
		||||
            # Ensure layer_past is on same device as hidden_states (might not be correct)
 | 
			
		||||
            if layer_past is not None:
 | 
			
		||||
                layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
 | 
			
		||||
            # Ensure that attention_mask is always on the same device as hidden_states
 | 
			
		||||
            if attention_mask is not None:
 | 
			
		||||
                attention_mask = attention_mask.to(hidden_states.device)
 | 
			
		||||
            if isinstance(head_mask, torch.Tensor):
 | 
			
		||||
                head_mask = head_mask.to(hidden_states.device)
 | 
			
		||||
        if output_hidden_states:
 | 
			
		||||
            all_hidden_states = all_hidden_states + (hidden_states,)
 | 
			
		||||
 | 
			
		||||
        if self.gradient_checkpointing and self.training:
 | 
			
		||||
            outputs = self._gradient_checkpointing_func(
 | 
			
		||||
                block.__call__,
 | 
			
		||||
                hidden_states,
 | 
			
		||||
                None,
 | 
			
		||||
                attention_mask,
 | 
			
		||||
                position_ids,
 | 
			
		||||
                head_mask[i],
 | 
			
		||||
                use_cache,
 | 
			
		||||
                output_attentions,
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            outputs = block(
 | 
			
		||||
                hidden_states=hidden_states,
 | 
			
		||||
                layer_past=layer_past,
 | 
			
		||||
                attention_mask=attention_mask,
 | 
			
		||||
                position_ids=position_ids,
 | 
			
		||||
                head_mask=head_mask[i],
 | 
			
		||||
                use_cache=use_cache,
 | 
			
		||||
                rotary_emb=(sin, cos),
 | 
			
		||||
                output_attentions=output_attentions,
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        hidden_states = outputs[0]
 | 
			
		||||
        if use_cache is True:
 | 
			
		||||
            presents = presents + (outputs[1],)
 | 
			
		||||
 | 
			
		||||
        if output_attentions:
 | 
			
		||||
            all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
 | 
			
		||||
 | 
			
		||||
        # Model Parallel: If it's the last layer for that device, put things on the next device
 | 
			
		||||
        if self.model_parallel:
 | 
			
		||||
            for k, v in self.device_map.items():
 | 
			
		||||
                if i == v[-1] and "cuda:" + str(k) != self.last_device:
 | 
			
		||||
                    hidden_states = hidden_states.to("cuda:" + str(k + 1))
 | 
			
		||||
 | 
			
		||||
    hidden_states = self.ln_f(hidden_states)
 | 
			
		||||
 | 
			
		||||
    hidden_states = hidden_states.view(output_shape)
 | 
			
		||||
    # Add last hidden state
 | 
			
		||||
    if output_hidden_states:
 | 
			
		||||
        all_hidden_states = all_hidden_states + (hidden_states,)
 | 
			
		||||
 | 
			
		||||
    if not return_dict:
 | 
			
		||||
        return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions]
 | 
			
		||||
                     if v is not None)
 | 
			
		||||
 | 
			
		||||
    return BaseModelOutputWithPast(
 | 
			
		||||
        last_hidden_state=hidden_states,
 | 
			
		||||
        past_key_values=presents,
 | 
			
		||||
        hidden_states=all_hidden_states,
 | 
			
		||||
        attentions=all_self_attentions,
 | 
			
		||||
    )
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -153,8 +153,6 @@ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, model_family):
 | 
			
		|||
        k_embed = (k * cos) + (rotate_half(k) * sin)
 | 
			
		||||
        return q_embed, k_embed
 | 
			
		||||
    elif model_family == "gptj":
 | 
			
		||||
        cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3)
 | 
			
		||||
        sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3)
 | 
			
		||||
        q_embed = (q * cos) + (rotate_every_two(q) * sin)
 | 
			
		||||
        k_embed = (k * cos) + (rotate_every_two(k) * sin)
 | 
			
		||||
        return q_embed, k_embed
 | 
			
		||||
| 
						 | 
				
			
			@ -163,6 +161,19 @@ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, model_family):
 | 
			
		|||
                          f"{model_family} is not supported.")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def apply_ipex_rotate_every_two(q, k, cos, sin):
 | 
			
		||||
    # ipex's apply_rotary_embedding_two_qk can change the origin storage,
 | 
			
		||||
    # so q/k will get the result directly.
 | 
			
		||||
    from bigdl.llm.transformers.utils import get_ipex_version
 | 
			
		||||
    if get_ipex_version() >= "2.1.10+xpu":
 | 
			
		||||
        torch.ops.torch_ipex.apply_rotary_embedding_two_qk(
 | 
			
		||||
            q, k, sin, cos, q, k
 | 
			
		||||
        )
 | 
			
		||||
    else:
 | 
			
		||||
        torch.ops.torch_ipex.apply_rotary_embedding(q, sin, cos, q)
 | 
			
		||||
        torch.ops.torch_ipex.apply_rotary_embedding(k, sin, cos, k)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def apply_rotary_pos_emb_no_cache_xpu(q, k, position_ids, model_family):
 | 
			
		||||
    if q.device.type != "xpu":
 | 
			
		||||
        invalidInputError(False,
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue