update orca automl doc with bigdl (#3297)
* update orca automl doc * typo
This commit is contained in:
		
							parent
							
								
									0d0cff81fd
								
							
						
					
					
						commit
						cda4102745
					
				
					 1 changed files with 9 additions and 9 deletions
				
			
		| 
						 | 
				
			
			@ -68,12 +68,12 @@ Note that the `optimizer` argument in Pytorch `AutoEstimator` constructor could
 | 
			
		|||
#### **2.4 Create and Fit Pytorch AutoEstimator**
 | 
			
		||||
User could create a Pytorch `AutoEstimator` as below.
 | 
			
		||||
```python
 | 
			
		||||
from zoo.orca.automl.auto_estimator import AutoEstimator
 | 
			
		||||
from bigdl.orca.automl.auto_estimator import AutoEstimator
 | 
			
		||||
 | 
			
		||||
auto_est = AutoEstimator.from_torch(model_creator=model_creator,
 | 
			
		||||
                                    optimizer=optim_creator,
 | 
			
		||||
                                    loss=nn.NLLLoss(),
 | 
			
		||||
                                    logs_dir="/tmp/zoo_automl_logs",
 | 
			
		||||
                                    logs_dir="/tmp/orca_automl_logs",
 | 
			
		||||
                                    resources_per_trial={"cpu": 2},
 | 
			
		||||
                                    name="lenet_mnist")
 | 
			
		||||
```
 | 
			
		||||
| 
						 | 
				
			
			@ -91,7 +91,7 @@ Finally, user can get the best learned model and the best hyper-parameters for f
 | 
			
		|||
best_model = auto_est.get_best_model() # a `torch.nn.Module` object
 | 
			
		||||
best_config = auto_est.get_best_config() # a dictionary of hyper-parameter names and values.
 | 
			
		||||
```
 | 
			
		||||
View the related [Python API doc](https://analytics-zoo.readthedocs.io/en/latest/doc/PythonAPI/AutoML/automl.html#orca-automl-auto-estimator) for more details.
 | 
			
		||||
View the related [Python API doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/AutoML/automl.html#orca-automl-auto-estimator) for more details.
 | 
			
		||||
 | 
			
		||||
### **3. TensorFlow/Keras AutoEstimator**
 | 
			
		||||
Users can create an `AutoEstimator` for TensorFlow Keras from a `tf.keras` model (using a *Model Creator Function*). For example:
 | 
			
		||||
| 
						 | 
				
			
			@ -107,7 +107,7 @@ def model_creator(config):
 | 
			
		|||
    return model
 | 
			
		||||
 | 
			
		||||
auto_est = AutoEstimator.from_keras(model_creator=model_creator,
 | 
			
		||||
                                    logs_dir="/tmp/zoo_automl_logs",
 | 
			
		||||
                                    logs_dir="/tmp/orca_automl_logs",
 | 
			
		||||
                                    resources_per_trial={"cpu": 2},
 | 
			
		||||
                                    name="auto_keras")
 | 
			
		||||
```
 | 
			
		||||
| 
						 | 
				
			
			@ -128,20 +128,20 @@ Finally, user can get the best learned model and the best hyper-parameters for f
 | 
			
		|||
best_model = auto_est.get_best_model() # a `torch.nn.Module` object
 | 
			
		||||
best_config = auto_est.get_best_config() # a dictionary of hyper-parameter names and values.
 | 
			
		||||
```
 | 
			
		||||
View the related [Python API doc](https://analytics-zoo.readthedocs.io/en/latest/doc/PythonAPI/AutoML/automl.html#orca-automl-auto-estimator) for more details.
 | 
			
		||||
View the related [Python API doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/AutoML/automl.html#orca-automl-auto-estimator) for more details.
 | 
			
		||||
 | 
			
		||||
### **4. Search Space and Search Algorithms**
 | 
			
		||||
For Hyper-parameter Optimization, user should define the search space of various hyper-parameter values for neural network training, as well as how to search through the chosen hyper-parameter space.
 | 
			
		||||
 | 
			
		||||
#### **4.1 Basic Search Algorithms**
 | 
			
		||||
 | 
			
		||||
For basic search algorithms like **Grid Search** and **Random Search**, we provide several sampling functions with `automl.hp`. See [API doc](https://analytics-zoo.readthedocs.io/en/latest/doc/PythonAPI/AutoML/automl.html#orca-automl-hp) for more details.
 | 
			
		||||
For basic search algorithms like **Grid Search** and **Random Search**, we provide several sampling functions with `automl.hp`. See [API doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/AutoML/automl.html#orca-automl-hp) for more details.
 | 
			
		||||
 | 
			
		||||
`AutoEstimator` requires a dictionary for the `search_space` argument in `fit`.
 | 
			
		||||
In the dictionary, the keys are the hyper-parameter names, and the values specify how to sample the search spaces for the hyper-parameters.
 | 
			
		||||
 | 
			
		||||
```python
 | 
			
		||||
from zoo.orca.automl import hp
 | 
			
		||||
from bigdl.orca.automl import hp
 | 
			
		||||
 | 
			
		||||
search_space = {
 | 
			
		||||
    "fc1_hidden_size": hp.grid_search([500, 600]),
 | 
			
		||||
| 
						 | 
				
			
			@ -163,7 +163,7 @@ pip install bayesian-optimization
 | 
			
		|||
 | 
			
		||||
And pass the search algorithm name to `search_alg` in `AutoEstimator.fit`.
 | 
			
		||||
```python
 | 
			
		||||
from zoo.orca.automl import hp
 | 
			
		||||
from bigdl.orca.automl import hp
 | 
			
		||||
 | 
			
		||||
search_space = {
 | 
			
		||||
    "width": hp.uniform(0, 20),
 | 
			
		||||
| 
						 | 
				
			
			@ -178,7 +178,7 @@ auto_estimator.fit(
 | 
			
		|||
    search_alg="bayesopt",
 | 
			
		||||
)
 | 
			
		||||
```
 | 
			
		||||
See [API Doc](https://analytics-zoo.readthedocs.io/en/latest/doc/PythonAPI/AutoML/automl.html#orca-automl-auto-estimator) for more details.
 | 
			
		||||
See [API Doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/AutoML/automl.html#orca-automl-auto-estimator) for more details.
 | 
			
		||||
 | 
			
		||||
### **4. Scheduler**
 | 
			
		||||
*Scheduler* can stop/pause/tweak the hyper-parameters of running trials, making the hyper-parameter tuning process much efficient.
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue