diff --git a/docs/readthedocs/source/doc/Orca/Overview/distributed-tuning.md b/docs/readthedocs/source/doc/Orca/Overview/distributed-tuning.md index e3a38070..d7869ab6 100644 --- a/docs/readthedocs/source/doc/Orca/Overview/distributed-tuning.md +++ b/docs/readthedocs/source/doc/Orca/Overview/distributed-tuning.md @@ -68,12 +68,12 @@ Note that the `optimizer` argument in Pytorch `AutoEstimator` constructor could #### **2.4 Create and Fit Pytorch AutoEstimator** User could create a Pytorch `AutoEstimator` as below. ```python -from zoo.orca.automl.auto_estimator import AutoEstimator +from bigdl.orca.automl.auto_estimator import AutoEstimator auto_est = AutoEstimator.from_torch(model_creator=model_creator, optimizer=optim_creator, loss=nn.NLLLoss(), - logs_dir="/tmp/zoo_automl_logs", + logs_dir="/tmp/orca_automl_logs", resources_per_trial={"cpu": 2}, name="lenet_mnist") ``` @@ -91,7 +91,7 @@ Finally, user can get the best learned model and the best hyper-parameters for f best_model = auto_est.get_best_model() # a `torch.nn.Module` object best_config = auto_est.get_best_config() # a dictionary of hyper-parameter names and values. ``` -View the related [Python API doc](https://analytics-zoo.readthedocs.io/en/latest/doc/PythonAPI/AutoML/automl.html#orca-automl-auto-estimator) for more details. +View the related [Python API doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/AutoML/automl.html#orca-automl-auto-estimator) for more details. ### **3. TensorFlow/Keras AutoEstimator** Users can create an `AutoEstimator` for TensorFlow Keras from a `tf.keras` model (using a *Model Creator Function*). For example: @@ -107,7 +107,7 @@ def model_creator(config): return model auto_est = AutoEstimator.from_keras(model_creator=model_creator, - logs_dir="/tmp/zoo_automl_logs", + logs_dir="/tmp/orca_automl_logs", resources_per_trial={"cpu": 2}, name="auto_keras") ``` @@ -128,20 +128,20 @@ Finally, user can get the best learned model and the best hyper-parameters for f best_model = auto_est.get_best_model() # a `torch.nn.Module` object best_config = auto_est.get_best_config() # a dictionary of hyper-parameter names and values. ``` -View the related [Python API doc](https://analytics-zoo.readthedocs.io/en/latest/doc/PythonAPI/AutoML/automl.html#orca-automl-auto-estimator) for more details. +View the related [Python API doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/AutoML/automl.html#orca-automl-auto-estimator) for more details. ### **4. Search Space and Search Algorithms** For Hyper-parameter Optimization, user should define the search space of various hyper-parameter values for neural network training, as well as how to search through the chosen hyper-parameter space. #### **4.1 Basic Search Algorithms** -For basic search algorithms like **Grid Search** and **Random Search**, we provide several sampling functions with `automl.hp`. See [API doc](https://analytics-zoo.readthedocs.io/en/latest/doc/PythonAPI/AutoML/automl.html#orca-automl-hp) for more details. +For basic search algorithms like **Grid Search** and **Random Search**, we provide several sampling functions with `automl.hp`. See [API doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/AutoML/automl.html#orca-automl-hp) for more details. `AutoEstimator` requires a dictionary for the `search_space` argument in `fit`. In the dictionary, the keys are the hyper-parameter names, and the values specify how to sample the search spaces for the hyper-parameters. ```python -from zoo.orca.automl import hp +from bigdl.orca.automl import hp search_space = { "fc1_hidden_size": hp.grid_search([500, 600]), @@ -163,7 +163,7 @@ pip install bayesian-optimization And pass the search algorithm name to `search_alg` in `AutoEstimator.fit`. ```python -from zoo.orca.automl import hp +from bigdl.orca.automl import hp search_space = { "width": hp.uniform(0, 20), @@ -178,7 +178,7 @@ auto_estimator.fit( search_alg="bayesopt", ) ``` -See [API Doc](https://analytics-zoo.readthedocs.io/en/latest/doc/PythonAPI/AutoML/automl.html#orca-automl-auto-estimator) for more details. +See [API Doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/AutoML/automl.html#orca-automl-auto-estimator) for more details. ### **4. Scheduler** *Scheduler* can stop/pause/tweak the hyper-parameters of running trials, making the hyper-parameter tuning process much efficient.