Optimize Llama Attention to to reduce KV cache memory copy (#8580)

* Optimize llama attention to reduce KV cache memory copy

* fix bug

* fix style

* remove git

* fix style

* fix style

* fix style

* fix tests

* move llama attention to another file

* revert

* fix style

* remove jit

* fix
This commit is contained in:
Yang Wang 2023-08-02 07:37:58 +08:00 committed by GitHub
parent 39994738d1
commit cbeae97a26
3 changed files with 240 additions and 0 deletions

View file

@ -33,6 +33,14 @@ def save_low_bit(self, *args, **kwargs):
self.save_pretrained(*args, **kwargs)
def convert_forward(m, target_m, new_forward):
for _, sub_m in m.named_children():
if isinstance(sub_m, target_m):
bound_method = new_forward.__get__(sub_m, sub_m.__class__)
setattr(sub_m, "forward", bound_method)
convert_forward(sub_m, target_m, new_forward)
class _BaseAutoModelClass:
HF_MODEL = None
@ -80,6 +88,20 @@ class _BaseAutoModelClass:
return model
@classmethod
def optimize(cls, model):
from packaging import version
from bigdl.llm.transformers.models.llama import llama_attention_forward_4_31
trans_version = transformers.__version__
if version.parse(trans_version) >= version.parse("4.31.0"):
convert_forward(
model,
transformers.models.llama.modeling_llama.LlamaAttention,
llama_attention_forward_4_31,)
else:
# todo implement 4.28.0 ~ 4.30.2
pass
@classmethod
def load_convert(cls, q_k, *args, **kwargs):
from .convert import ggml_convert_quant
@ -92,6 +114,8 @@ class _BaseAutoModelClass:
model = ggml_convert_quant(model, qtype)
model.config.update({"bigdl_transformers_low_bit": q_k})
cls.optimize(model)
# add save_low_bit to pretrained model dynamically
import types
model.save_low_bit = types.MethodType(save_low_bit, model)

View file

@ -0,0 +1,14 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

View file

@ -0,0 +1,202 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/huggingface/transformers/blob/v4.31.0/src/transformers/models/llama/modeling_llama.py
# which is licensed under Apache License 2.0:
#
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn as nn
from typing import Optional, Tuple
import math
import torch.nn.functional as F
from bigdl.llm.utils.common import invalidInputError
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., :x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2:]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states
go from (batch, num_key_value_heads, seqlen, head_dim) to
(batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads,
n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
def llama_attention_forward_4_31(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
if self.pretraining_tp > 1:
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.pretraining_tp
query_slices = self.q_proj.weight.split((self.num_heads * self.head_dim)
// self.pretraining_tp, dim=0)
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
query_states = [F.linear(hidden_states, query_slices[i])
for i in range(self.pretraining_tp)]
query_states = torch.cat(query_states, dim=-1)
key_states = [F.linear(hidden_states, key_slices[i])
for i in range(self.pretraining_tp)]
key_states = torch.cat(key_states, dim=-1)
value_states = [F.linear(hidden_states, value_slices[i])
for i in range(self.pretraining_tp)]
value_states = torch.cat(value_states, dim=-1)
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len,
self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len,
self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len,
self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
cos, sin, position_ids)
if past_key_value is not None:
# reuse k, v, self_attention
# key_states = torch.cat([past_key_value[0], key_states], dim=2)
# value_states = torch.cat([past_key_value[1], value_states], dim=2)
if kv_seq_len > self.max_cache_length:
new_cache_key = torch.empty(bsz, self.num_heads,
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH, self.head_dim)
new_cache_key[:, :, :kv_seq_len-1, :] = self.kv_cache[0][:, :, :kv_seq_len-1, :]
self.kv_cache[0] = new_cache_key
new_cache_value = torch.empty(bsz, self.num_heads,
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH, self.head_dim)
new_cache_value[:, :, :kv_seq_len-1, :] = self.kv_cache[1][:, :, :kv_seq_len-1, :]
self.kv_cache[1] = new_cache_value
self.max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
self.kv_cache[0][:, :, kv_seq_len-1:kv_seq_len, :] = key_states
self.kv_cache[1][:, :, kv_seq_len-1:kv_seq_len, :] = value_states
key_states = self.kv_cache[0][:, :, :kv_seq_len, :]
value_states = self.kv_cache[1][:, :, :kv_seq_len, :]
elif use_cache:
# first token case
self.max_cache_length = max(min(self.max_position_embeddings, 2 * kv_seq_len),
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH)
self.kv_cache = (torch.empty(bsz, self.num_heads, self.max_cache_length, self.head_dim),
torch.empty(bsz, self.num_heads, self.max_cache_length, self.head_dim))
self.kv_cache[0][:, :, :kv_seq_len, :] = key_states
self.kv_cache[1][:, :, :kv_seq_len, :] = value_states
past_key_value = (key_states, value_states) if use_cache else None
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
attn_weights_size = (bsz, self.num_heads, q_len, kv_seq_len)
if attn_weights.size() != attn_weights_size:
invalidInputError(False,
f"Attention weights should be of size {attn_weights_size}, "
f"but is {attn_weights.size()}")
if attention_mask is not None:
attn_mask_size = (bsz, 1, q_len, kv_seq_len)
if attention_mask.size() != attn_mask_size:
invalidInputError(False,
f"Attention mask should be of size {attn_mask_size}, "
f"but is {attention_mask.size()}")
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1,
dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
attn_output_size = (bsz, self.num_heads, q_len, self.head_dim)
if attn_output.size() != attn_output_size:
invalidInputError(False,
f"`attn_output` should be of size {attn_output_size},"
f" but is {attn_output.size()}")
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
if self.pretraining_tp > 1:
attn_output = attn_output.split(self.hidden_size // self.pretraining_tp, dim=2)
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.pretraining_tp, dim=1)
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i])
for i in range(self.pretraining_tp)])
else:
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value