LLM: add chat & stream chat example for ChatGLM2 transformers int4 (#8636)
This commit is contained in:
		
							parent
							
								
									cdfbe652ca
								
							
						
					
					
						commit
						39994738d1
					
				
					 2 changed files with 115 additions and 1 deletions
				
			
		| 
						 | 
				
			
			@ -5,7 +5,7 @@ In this directory, you will find examples on how you could apply BigDL-LLM INT4
 | 
			
		|||
## 0. Requirements
 | 
			
		||||
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
 | 
			
		||||
 | 
			
		||||
## Example: Predict Tokens using `generate()` API
 | 
			
		||||
## Example 1: Predict Tokens using `generate()` API
 | 
			
		||||
In the example [generate.py](./generate.py), we show a basic use case for a ChatGLM2 model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
 | 
			
		||||
### 1. Install
 | 
			
		||||
We suggest using conda to manage environment:
 | 
			
		||||
| 
						 | 
				
			
			@ -74,3 +74,55 @@ Inference time: xxxx s
 | 
			
		|||
 | 
			
		||||
答: Artificial Intelligence (AI) refers to the ability of a computer or machine to perform tasks that typically require human-like intelligence, such as understanding language, recognizing patterns
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
## Example 2: Stream Chat using `stream_chat()` API
 | 
			
		||||
In the example [streamchat.py](./streamchat.py), we show a basic use case for a ChatGLM2 model to stream chat, with BigDL-LLM INT4 optimizations.
 | 
			
		||||
### 1. Install
 | 
			
		||||
We suggest using conda to manage environment:
 | 
			
		||||
```bash
 | 
			
		||||
conda create -n llm python=3.9
 | 
			
		||||
conda activate llm
 | 
			
		||||
 | 
			
		||||
pip install bigdl-llm[all] # install bigdl-llm with 'all' option
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 2. Run
 | 
			
		||||
**Stream Chat using `stream_chat()` API**:
 | 
			
		||||
```
 | 
			
		||||
python ./streamchat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --question QUESTION
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
**Chat using `chat()` API**:
 | 
			
		||||
```
 | 
			
		||||
python ./streamchat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --question QUESTION --disable-stream
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
Arguments info:
 | 
			
		||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the ChatGLM2 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/chatglm2-6b'`.
 | 
			
		||||
- `--question QUESTION`: argument defining the question to ask. It is default to be `"晚上睡不着应该怎么办"`.
 | 
			
		||||
- `--disable-stream`: argument defining whether to stream chat. If include `--disable-stream` when running the script, the stream chat is disabled and `chat()` API is used.
 | 
			
		||||
 | 
			
		||||
> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
 | 
			
		||||
>
 | 
			
		||||
> Please select the appropriate size of the ChatGLM2 model based on the capabilities of your machine.
 | 
			
		||||
 | 
			
		||||
#### 2.1 Client
 | 
			
		||||
On client Windows machine, it is recommended to run directly with full utilization of all cores:
 | 
			
		||||
```powershell
 | 
			
		||||
$env:PYTHONUNBUFFERED=1  # ensure stdout and stderr streams are sent straight to terminal without being first buffered
 | 
			
		||||
python ./streamchat.py
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 2.2 Server
 | 
			
		||||
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
 | 
			
		||||
 | 
			
		||||
E.g. on Linux,
 | 
			
		||||
```bash
 | 
			
		||||
# set BigDL-Nano env variables
 | 
			
		||||
source bigdl-nano-init
 | 
			
		||||
 | 
			
		||||
# e.g. for a server with 48 cores per socket
 | 
			
		||||
export OMP_NUM_THREADS=48
 | 
			
		||||
export PYTHONUNBUFFERED=1  # ensure stdout and stderr streams are sent straight to terminal without being first buffered
 | 
			
		||||
numactl -C 0-47 -m 0 python ./streamchat.py
 | 
			
		||||
```
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -0,0 +1,62 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import time
 | 
			
		||||
import argparse
 | 
			
		||||
import numpy as np
 | 
			
		||||
 | 
			
		||||
from bigdl.llm.transformers import AutoModel
 | 
			
		||||
from transformers import AutoTokenizer
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    parser = argparse.ArgumentParser(description='Stream Chat for ChatGLM2 model')
 | 
			
		||||
    parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/chatglm2-6b",
 | 
			
		||||
                        help='The huggingface repo id for the ChatGLM2 model to be downloaded'
 | 
			
		||||
                             ', or the path to the huggingface checkpoint folder')
 | 
			
		||||
    parser.add_argument('--question', type=str, default="晚上睡不着应该怎么办",
 | 
			
		||||
                        help='Qustion you want to ask')
 | 
			
		||||
    parser.add_argument('--disable-stream', action="store_true",
 | 
			
		||||
                        help='Disable stream chat')
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path
 | 
			
		||||
    disable_stream = args.disable_stream
 | 
			
		||||
 | 
			
		||||
    # Load model in 4 bit,
 | 
			
		||||
    # which convert the relevant layers in the model into INT4 format
 | 
			
		||||
    model = AutoModel.from_pretrained(model_path,
 | 
			
		||||
                                      load_in_4bit=True,
 | 
			
		||||
                                      trust_remote_code=True)
 | 
			
		||||
 | 
			
		||||
    # Load tokenizer
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
			
		||||
                                              trust_remote_code=True)
 | 
			
		||||
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        if disable_stream:
 | 
			
		||||
            # Chat
 | 
			
		||||
            response, history = model.chat(tokenizer, args.question, history=[])
 | 
			
		||||
            print('-'*20, 'Chat Output', '-'*20)
 | 
			
		||||
            print(response)
 | 
			
		||||
        else:
 | 
			
		||||
            # Stream chat
 | 
			
		||||
            response_ = ""
 | 
			
		||||
            print('-'*20, 'Stream Chat Output', '-'*20)
 | 
			
		||||
            for response, history in model.stream_chat(tokenizer, args.question, history=[]):
 | 
			
		||||
                print(response.replace(response_, ""), end="")
 | 
			
		||||
                response_ = response
 | 
			
		||||
		Loading…
	
		Reference in a new issue