Experiment XPU QLora Finetuning (#8937)

* Support xpu finetuning

* support xpu finetuning

* fix style

* fix style

* fix style

* refine example

* add readme

* refine readme

* refine api

* fix fp16

* fix example

* refactor

* fix style

* fix compute type

* add qlora

* refine training args

* fix example

* fix style

* fast path forinference

* address comments

* refine readme

* revert lint
This commit is contained in:
Yang Wang 2023-09-20 01:15:44 +08:00 committed by GitHub
parent 51518e029d
commit c88f6ec457
6 changed files with 373 additions and 8 deletions

View file

@ -0,0 +1,50 @@
# Q-Lora (experimental support)
This example demonstrates how to finetune a llama2-7b model use Big-LLM 4bit optimizations using [Intel GPUs](../README.md).
## 0. Requirements
To run this example with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Finetune llama2-7b using qlora
This example is ported from [bnb-4bit-training](https://colab.research.google.com/drive/1VoYNfYDKcKRQRor98Zbf2-9VQTtGJ24k?usp=sharing)
### 1. Install
```bash
conda create -n llm python=3.9
conda activate llm
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
# you can install specific ipex/torch version for your need
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
pip install git+https://github.com/huggingface/transformers.git@95fe0f5
pip install peft==0.5.0
```
### 2. Configures OneAPI environment variables
```bash
source /opt/intel/oneapi/setvars.sh
```
### 3. Run
```
python ./qlora_finetuning.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH
```
### Sample Output
```log
{'loss': 1.6134, 'learning_rate': 0.0002, 'epoch': 0.03}
{'loss': 1.3038, 'learning_rate': 0.00017777777777777779, 'epoch': 0.06}
{'loss': 1.2634, 'learning_rate': 0.00015555555555555556, 'epoch': 0.1}
{'loss': 1.2389, 'learning_rate': 0.00013333333333333334, 'epoch': 0.13}
{'loss': 1.0399, 'learning_rate': 0.00011111111111111112, 'epoch': 0.16}
{'loss': 1.0406, 'learning_rate': 8.888888888888889e-05, 'epoch': 0.19}
{'loss': 1.3114, 'learning_rate': 6.666666666666667e-05, 'epoch': 0.22}
{'loss': 0.9876, 'learning_rate': 4.4444444444444447e-05, 'epoch': 0.26}
{'loss': 1.1406, 'learning_rate': 2.2222222222222223e-05, 'epoch': 0.29}
{'loss': 1.1728, 'learning_rate': 0.0, 'epoch': 0.32}
{'train_runtime': 225.8005, 'train_samples_per_second': 3.543, 'train_steps_per_second': 0.886, 'train_loss': 1.211241865158081, 'epoch': 0.32}
100%|██████████████████████████████████████████████████████████████████████████████████████████████████| 200/200 [03:45<00:00, 1.13s/it]
TrainOutput(global_step=200, training_loss=1.211241865158081, metrics={'train_runtime': 225.8005, 'train_samples_per_second': 3.543, 'train_steps_per_second': 0.886, 'train_loss': 1.211241865158081, 'epoch': 0.32})
```

View file

@ -0,0 +1,84 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import os
os.environ["ACCELERATE_USE_IPEX"] = "true"
os.environ["ACCELERATE_USE_XPU"] = "true"
import transformers
from transformers import LlamaTokenizer
from peft import LoraConfig
import intel_extension_for_pytorch as ipex
from bigdl.llm.transformers.qlora import get_peft_model, prepare_model_for_kbit_training
from bigdl.llm.transformers import AutoModelForCausalLM
from datasets import load_dataset
import argparse
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model')
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-hf",
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--dataset', type=str, default="Abirate/english_quotes")
args = parser.parse_args()
model_path = args.repo_id_or_model_path
dataset_path = args.dataset
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
data = load_dataset(dataset_path)
data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True)
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=False,
modules_to_not_convert=["lm_head"],)
model = model.to('xpu')
model.gradient_checkpointing_enable()
model = prepare_model_for_kbit_training(model)
config = LoraConfig(
r=8,
lora_alpha=32,
target_modules=["q_proj", "k_proj", "v_proj"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)
model = get_peft_model(model, config)
tokenizer.pad_token_id = 0
tokenizer.padding_side = "left"
trainer = transformers.Trainer(
model=model,
train_dataset=data["train"],
args=transformers.TrainingArguments(
per_device_train_batch_size=4,
gradient_accumulation_steps= 1,
warmup_steps=20,
max_steps=200,
learning_rate=2e-4,
fp16=False, # fp16 is not supported yet
logging_steps=20,
output_dir="outputs",
optim="adamw_hf", # paged_adamw_8bit is not supported yet
# gradient_checkpointing=True, # can further reduce memory but slower
),
data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
)
model.config.use_cache = False # silence the warnings. Please re-enable for inference!
result = trainer.train()
print(result)

View file

@ -99,8 +99,9 @@ def _replace_with_low_bit_linear(model, qtype, modules_to_not_convert=None,
def ggml_convert_low_bit(model, qtype, optimize_model=True,
convert_shape_only=False, device="cpu"):
modules_to_not_convert = [] # ["lm_head"]
convert_shape_only=False, device="cpu",
modules_to_not_convert=None):
modules_to_not_convert = [] if modules_to_not_convert is None else modules_to_not_convert
model, has_been_replaced = _replace_with_low_bit_linear(
model, qtype, modules_to_not_convert,
None, convert_shape_only,

View file

@ -284,8 +284,38 @@ def ggml_matmul_src1_x_src0_t(src0: torch.Tensor,
return result_t
class MatMulLowBit(torch.autograd.Function):
@staticmethod
def forward(ctx, A, weight):
ctx.is_empty = False
import linear_q4_0
result = linear_q4_0.forward_new(A, weight.data, weight.qtype)
if any(ctx.needs_input_grad[:2]):
ctx.tensors = (A, weight)
else:
ctx.tensors = (None, None)
return result
@staticmethod
def backward(ctx, grad_output):
import linear_q4_0
if ctx.is_empty:
bias_grad = None if ctx.bias is None else torch.zeros_like(ctx.bias)
return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, bias_grad, None
req_gradA, _ = ctx.needs_input_grad
A, weight = ctx.tensors
grad_A, grad_weight = None, None
if req_gradA:
dequant_weight = linear_q4_0.dequant(A, weight.data, weight.qtype)
grad_A = torch.matmul(grad_output, dequant_weight.reshape(weight._shape))
return grad_A, grad_weight
class LowBitLinear(nn.Linear):
def __init__(self, input_features, output_features, qtype, bias=True):
def __init__(self, input_features, output_features, qtype, bias=True,
conver_to_half=True):
super().__init__(input_features, output_features, bias)
self.weight = FP4Params(self.weight.data,
requires_grad=False,
@ -295,6 +325,7 @@ class LowBitLinear(nn.Linear):
self.weight_shape = (self.out_len, self.in_len)
self.weight_length = self.out_len * self.in_len
self.qtype = qtype
self.conver_to_half = conver_to_half
def forward(self, x: torch.Tensor):
if self.bias is not None and self.bias.dtype != x.dtype:
@ -317,10 +348,14 @@ class LowBitLinear(nn.Linear):
if x_2d.is_contiguous() is False:
x_2d = x_2d.contiguous()
# current workaround to reduce first token latency of fp32 input
if x_2d.shape[0] > 1 and x_2d.dtype == torch.float32:
# sometimes fp16 cause nan and training instability
# disable the conversion when training
if self.conver_to_half and x_2d.shape[0] > 1 and x_2d.dtype == torch.float32:
x_2d = x_2d.half()
# input format of linear_q4.forward is 1: input, 2: weight
result = linear_q4_0.forward_new(x_2d, x0, self.qtype)
if self.training and x_2d.requires_grad:
result = MatMulLowBit.apply(x_2d, self.weight)
else:
result = linear_q4_0.forward_new(x_2d, self.weight.data, self.weight.qtype)
new_shape = x_shape[:-1] + (self.out_len,)
result = result.view(new_shape)
if self.bias is not None:

View file

@ -108,6 +108,7 @@ class _BaseAutoModelClass:
# In case it needs a second try,
# `from_pretrained`` may pop items out in dict
# and lead to args missing.
modules_to_not_convert = kwargs.pop("modules_to_not_convert", None)
_args = copy.deepcopy(args)
_kwargs = copy.deepcopy(kwargs)
try:
@ -119,7 +120,8 @@ class _BaseAutoModelClass:
model = cls.HF_Model.from_pretrained(*_args, **_kwargs)
model.config.update({"bigdl_lcmu_enabled": False})
model = model.to("cpu")
model = ggml_convert_low_bit(model, qtype, optimize_model)
model = ggml_convert_low_bit(model, qtype, optimize_model,
modules_to_not_convert=modules_to_not_convert)
model.config.update({"bigdl_transformers_low_bit": q_k})
model.config.update({"tie_word_embeddings": False})
@ -155,6 +157,7 @@ class _BaseAutoModelClass:
import copy
import os
modules_to_not_convert = kwargs.pop("modules_to_not_convert", None)
# Autofactory
trust_remote_code = kwargs.pop("trust_remote_code", None)
kwargs_orig = copy.deepcopy(kwargs)
@ -264,7 +267,8 @@ class _BaseAutoModelClass:
# Loading args may differ based on their usage
quant_device = "meta" if bigdl_lcmu_enabled else "cpu"
model = ggml_convert_low_bit(model, qtype, optimize_model, device=quant_device)
model = ggml_convert_low_bit(model, qtype, optimize_model, device=quant_device,
modules_to_not_convert=modules_to_not_convert)
if is_sharded:
loaded_state_dict_keys = sharded_metadata["all_checkpoint_keys"]

View file

@ -0,0 +1,191 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/huggingface/peft/blob/v0.5.0/src/peft/tuners/lora.py
#
# coding=utf-8
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from bigdl.llm.transformers.low_bit_linear import LowBitLinear
from peft.tuners.lora import LoraLayer
from bigdl.llm.utils.common import invalidInputError
class LoraLowBitLinear(LowBitLinear, LoraLayer):
# Lora implemented in a dense layer
def __init__(
self,
adapter_name,
in_features,
out_features,
r: int = 0,
lora_alpha: int = 1,
lora_dropout: float = 0.0,
**kwargs,
):
LowBitLinear.__init__(
self,
in_features,
out_features,
qtype=kwargs.get("qtype"),
bias=kwargs.get("bias", True),
conver_to_half=False,
)
LoraLayer.__init__(self, in_features=in_features, out_features=out_features)
# Freezing the pre-trained weight matrix
self.weight.requires_grad = False
init_lora_weights = kwargs.pop("init_lora_weights", True)
self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights)
self.active_adapter = adapter_name
def forward(self, x: torch.Tensor):
result = super().forward(x)
if self.disable_adapters or self.active_adapter not in self.lora_A.keys():
return result
elif self.r[self.active_adapter] > 0:
result = result.clone()
if not torch.is_autocast_enabled():
expected_dtype = result.dtype
x = x.to(self.lora_A[self.active_adapter].weight.dtype)
output = (
self.lora_B[self.active_adapter](
self.lora_A[self.active_adapter](self.lora_dropout[self.active_adapter](x))
).to(expected_dtype)
* self.scaling[self.active_adapter]
)
else:
output = (
self.lora_B[self.active_adapter](
self.lora_A[self.active_adapter](self.lora_dropout[self.active_adapter](x))
)
* self.scaling[self.active_adapter]
)
result += output
return result
@staticmethod
def _create_new_module(lora_config, adapter_name, target, **kwargs):
bias = kwargs.pop("bias", False)
if isinstance(target, LowBitLinear):
low_bit_kwargs = kwargs.copy()
low_bit_kwargs.update(
{
"qtype": target.qtype,
}
)
new_module = LoraLowBitLinear(adapter_name,
target.in_features,
target.out_features,
bias=bias,
**low_bit_kwargs)
else:
invalidInputError(False,
f"Target module {target} is not supported. "
f"Currently, only `LowBitLinear` are supported.")
return new_module
from peft.tuners.lora import LoraModel
def get_peft_model(*args, **kwargs):
old_create_new_module = LoraModel._create_new_module
LoraModel._create_new_module = _create_new_module
try:
from peft import get_peft_model as get_peft_model_original
model = get_peft_model_original(*args, **kwargs)
finally:
LoraModel._create_new_module = old_create_new_module
return model
def prepare_model_for_kbit_training(model, use_gradient_checkpointing=True):
r"""
This method wraps the entire protocol for preparing a model before running a training.
This includes:
1- Cast the layernorm in fp32
2- making output embedding layer require grads
3- Add the upcasting of the lm head to fp32
Args:
model, (`transformers.PreTrainedModel`):
The loaded model from `transformers`
"""
is_gptq_quantized = getattr(model, "quantization_method", None) == "gptq"
for name, param in model.named_parameters():
# freeze base model's layers
param.requires_grad = False
if not is_gptq_quantized:
# cast all non INT8 parameters to fp32
for param in model.parameters():
if (param.dtype == torch.float16) or (param.dtype == torch.bfloat16):
param.data = param.data.to(torch.float32)
if use_gradient_checkpointing:
# For backward compatibility
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
else:
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
# enable gradient checkpointing for memory efficiency
model.gradient_checkpointing_enable()
return model
class PeftModel:
@staticmethod
def from_pretrained(*args,
**kwargs):
old_create_new_module = LoraModel._create_new_module
LoraModel._create_new_module = _create_new_module
from peft import PeftModel
try:
model = PeftModel.from_pretrained(*args, **kwargs)
finally:
LoraModel._create_new_module = old_create_new_module
return model