Update llm readme (#9005)

This commit is contained in:
Jason Dai 2023-09-19 20:01:33 +08:00 committed by GitHub
parent 249386261c
commit 51518e029d
4 changed files with 103 additions and 116 deletions

View file

@ -12,9 +12,9 @@
> *It is built on top of the excellent work of [llama.cpp](https://github.com/ggerganov/llama.cpp), [gptq](https://github.com/IST-DASLab/gptq), [ggml](https://github.com/ggerganov/ggml), [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), [bitsandbytes](https://github.com/TimDettmers/bitsandbytes), [qlora](https://github.com/artidoro/qlora), [gptq_for_llama](https://github.com/qwopqwop200/GPTQ-for-LLaMa), [chatglm.cpp](https://github.com/li-plus/chatglm.cpp), [redpajama.cpp](https://github.com/togethercomputer/redpajama.cpp), [gptneox.cpp](https://github.com/byroneverson/gptneox.cpp), [bloomz.cpp](https://github.com/NouamaneTazi/bloomz.cpp/), etc.*
### Latest update
- `bigdl-llm` now supports Intel Arc or Flex GPU; see the the latest GPU examples [here](python/llm/example/gpu).
- `bigdl-llm` now supports Intel GPU (including Arc, Flex and MAX); see the the latest GPU examples [here](python/llm/example/gpu).
- `bigdl-llm` tutorial is released [here](https://github.com/intel-analytics/bigdl-llm-tutorial).
- Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLaMA2, ChatGLM/ChatGLM2, MPT, Falcon, Dolly-v1/Dolly-v2, StarCoder, Whisper, QWen, Baichuan, MOSS,* and more; see the complete list [here](python/llm/README.md#verified-models).
- Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLaMA2, ChatGLM/ChatGLM2, MPT, Falcon, Dolly-v1/Dolly-v2, StarCoder, Whisper, InternLM, QWen, Baichuan, MOSS,* and more; see the complete list [here](python/llm/README.md#verified-models).
### `bigdl-llm` Demos
See the ***optimized performance*** of `chatglm2-6b` and `llama-2-13b-chat` models on 12th Gen Intel Core CPU and Intel Arc GPU below.
@ -104,7 +104,7 @@ input_ids = tokenizer.encode(input_str, ...).to('xpu')
output_ids = model.generate(input_ids, ...)
output = tokenizer.batch_decode(output_ids.cpu())
```
*See the complete examples [here](python/llm/example/transformers/transformers_int4/).*
*See the complete examples [here](python/llm/example/gpu/).*
#### More Low-Bit Support
##### Save and load

View file

@ -24,9 +24,9 @@ BigDL-LLM: low-Bit LLM library
============================================
Latest update
============================================
- ``bigdl-llm`` now supports Intel Arc and Flex GPU; see the the latest GPU examples `here <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/gpu>`_.
- ``bigdl-llm`` now supports Intel GPU (including Arc, Flex and MAX); see the the latest GPU examples `here <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/gpu>`_.
- ``bigdl-llm`` tutorial is released `here <https://github.com/intel-analytics/bigdl-llm-tutorial>`_.
- Over 20 models have been verified on ``bigdl-llm``, including *LLaMA/LLaMA2, ChatGLM/ChatGLM2, MPT, Falcon, Dolly-v1/Dolly-v2, StarCoder, Whisper, QWen, Baichuan,* and more; see the complete list `here <https://github.com/intel-analytics/BigDL/tree/main/python/llm/README.md#verified-models>`_.
- Over 20 models have been verified on ``bigdl-llm``, including *LLaMA/LLaMA2, ChatGLM/ChatGLM2, MPT, Falcon, Dolly-v1/Dolly-v2, StarCoder, Whisper, InternLM, QWen, Baichuan, MOSS* and more; see the complete list `here <https://github.com/intel-analytics/BigDL/tree/main/python/llm/README.md#verified-models>`_.
============================================

View file

@ -1,11 +1,7 @@
## BigDL-LLM
**`bigdl-llm`** is a library for running ***LLM*** (large language model) on your Intel ***laptop*** or ***GPU*** using INT4 with very low latency[^1] (for any Hugging Face *Transformers* model).
**[`bigdl-llm`](https://bigdl.readthedocs.io/en/latest/doc/LLM/index.html)** is a library for running **LLM** (large language model) on Intel **XPU** (from *Laptop* to *GPU* to *Cloud*) using **INT4** with very low latency[^1] (for any **PyTorch** model).
> *It is built on top of the excellent work of [llama.cpp](https://github.com/ggerganov/llama.cpp), [gptq](https://github.com/IST-DASLab/gptq), [ggml](https://github.com/ggerganov/ggml), [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), [bitsandbytes](https://github.com/TimDettmers/bitsandbytes), [qlora](https://github.com/artidoro/qlora), [gptq_for_llama](https://github.com/qwopqwop200/GPTQ-for-LLaMa), [chatglm.cpp](https://github.com/li-plus/chatglm.cpp), [redpajama.cpp](https://github.com/togethercomputer/redpajama.cpp), [gptneox.cpp](https://github.com/byroneverson/gptneox.cpp), [bloomz.cpp](https://github.com/NouamaneTazi/bloomz.cpp/), etc.*
### Latest update
- `bigdl-llm` now supports Intel Arc or Flex GPU; see the the latest GPU examples [here](example/gpu).
### Demos
See the ***optimized performance*** of `chatglm2-6b` and `llama-2-13b-chat` models on 12th Gen Intel Core CPU and Intel Arc GPU below.
@ -37,9 +33,11 @@ See the ***optimized performance*** of `chatglm2-6b` and `llama-2-13b-chat` mode
</tr>
</table>
### Verified models
We may use any Hugging Face Transfomer models on `bigdl-llm`, and the following models have been verified on Intel laptops.
Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLaMA2, ChatGLM/ChatGLM2, MPT, Falcon, Dolly-v1/Dolly-v2, StarCoder, Whisper, InternLM, QWen, Baichuan, MOSS,* and more; see the complete list below.
<details><summary>Table of verified models</summary>
| Model | Example |
|-----------|----------------------------------------------------------|
| LLaMA *(such as Vicuna, Guanaco, Koala, Baize, WizardLM, etc.)* | [link1](example/transformers/native_int4), [link2](example/transformers/transformers_int4/vicuna) |
@ -51,6 +49,7 @@ We may use any Hugging Face Transfomer models on `bigdl-llm`, and the following
| Qwen | [link](example/transformers/transformers_int4/qwen) |
| MOSS | [link](example/transformers/transformers_int4/moss) |
| Baichuan | [link](example/transformers/transformers_int4/baichuan) |
| Baichuan2 | [link](example/transformers/transformers_int4/baichuan2) |
| Dolly-v1 | [link](example/transformers/transformers_int4/dolly_v1) |
| Dolly-v2 | [link](example/transformers/transformers_int4/dolly_v2) |
| RedPajama | [link1](example/transformers/native_int4), [link2](example/transformers/transformers_int4/redpajama) |
@ -59,109 +58,136 @@ We may use any Hugging Face Transfomer models on `bigdl-llm`, and the following
| InternLM | [link](example/transformers/transformers_int4/internlm) |
| Whisper | [link](example/transformers/transformers_int4/whisper) |
</details>
### Working with `bigdl-llm`
<details><summary>Table of Contents</summary>
- [Install](#install)
- [Download Model](#download-model)
- [Run Model](#run-model)
- [Hugging Face `transformers` API](#hugging-face-transformers-api)
- [LangChain API](#langchain-api)
- [CLI Tool](#cli-tool)
- [Hugging Face `transformers` API](#1-hugging-face-transformers-api)
- [Native INT4 Model](#2-native-int4-model)
- [LangChain API](#l3-angchain-api)
- [CLI Tool](#4-cli-tool)
- [`bigdl-llm` API Doc](#bigdl-llm-api-doc)
- [`bigdl-llm` Dependence](#bigdl-llm-dependence)
- [`bigdl-llm` Dependency](#bigdl-llm-dependency)
</details>
#### Install
You may install **`bigdl-llm`** as follows:
##### CPU
You may install **`bigdl-llm`** on Intel CPU as follows:
```bash
pip install --pre --upgrade bigdl-llm[all]
```
#### Download Model
> Note: `bigdl-llm` has been tested on Python 3.9
You may download any PyTorch model in Hugging Face *Transformers* format (including *FP16* or *FP32* or *GPTQ-4bit*).
##### GPU
You may install **`bigdl-llm`** on Intel GPU as follows:
```bash
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
# you can install specific ipex/torch version for your need
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
```
> Note: `bigdl-llm` has been tested on Python 3.9
#### Run Model
You may run the models using **`bigdl-llm`** through one of the following APIs:
1. [Hugging Face `transformers` API](#hugging-face-transformers-api)
2. [LangChain API](#langchain-api)
3. [CLI (command line interface) Tool](#cli-tool)
1. [Hugging Face `transformers` API](#1-hugging-face-transformers-api)
2. [Native INT4 Model](#2-native-int4-model)
3. [LangChain API](#3-langchain-api)
4. [CLI (command line interface) Tool](#4-cli-tool)
#### Hugging Face `transformers` API
You may run the models using `transformers`-style API in `bigdl-llm`.
##### 1. Hugging Face `transformers` API
You may run any Hugging Face *Transformers* model as follows:
- ##### Using Hugging Face `transformers` INT4 format
###### CPU INT4
You may apply INT4 optimizations to any Hugging Face *Transformers* model on Intel CPU as follows.
You may apply INT4 optimizations to any Hugging Face *Transformers* models as follows.
```python
#load Hugging Face Transformers model with INT4 optimizations
from bigdl.llm.transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained('/path/to/model/', load_in_4bit=True)
```python
#load Hugging Face Transformers model with INT4 optimizations
from bigdl.llm.transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained('/path/to/model/', load_in_4bit=True)
```
#run the optimized model on Intel CPU
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path)
input_ids = tokenizer.encode(input_str, ...)
output_ids = model.generate(input_ids, ...)
output = tokenizer.batch_decode(output_ids)
```
After loading the Hugging Face Transformers model, you may easily run the optimized model as follows.
See the complete examples [here](example/transformers/transformers_int4/).
```python
#run the optimized model
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path)
input_ids = tokenizer.encode(input_str, ...)
output_ids = model.generate(input_ids, ...)
output = tokenizer.batch_decode(output_ids)
```
###### GPU INT4
You may apply INT4 optimizations to any Hugging Face *Transformers* model on Intel GPU as follows.
See the complete examples [here](example/transformers/transformers_int4/).
```python
#load Hugging Face Transformers model with INT4 optimizations
from bigdl.llm.transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained('/path/to/model/', load_in_4bit=True)
>**Note**: You may apply more low bit optimizations (including INT8, INT5 and INT4) as follows:
>```python
>model = AutoModelForCausalLM.from_pretrained('/path/to/model/', load_in_low_bit="sym_int5")
>```
>See the complete example [here](example/transformers/transformers_low_bit/).
#run the optimized model on Intel GPU
model = model.to('xpu')
After the model is optimizaed using INT4 (or INT8/INT5), you may save and load the optimized model as follows:
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path)
input_ids = tokenizer.encode(input_str, ...).to('xpu')
output_ids = model.generate(input_ids, ...)
output = tokenizer.batch_decode(output_ids.cpu())
```
See the complete examples [here](example/gpu/).
###### More Low-Bit Support
- Save and load
After the model is optimized using `bigdl-llm`, you may save and load the model as follows:
```python
model.save_low_bit(model_path)
new_model = AutoModelForCausalLM.load_low_bit(model_path)
```
See the example [here](example/transformers/transformers_low_bit/).
*See the complete example [here](example/transformers/transformers_low_bit/).*
- ##### Using native INT4 format
- Additonal data types
In addition to INT4, You may apply other low bit optimizations (such as *INT8*, *INT5*, *NF4*, etc.) as follows:
You may also convert Hugging Face *Transformers* models into native INT4 format for maximum performance as follows.
```python
model = AutoModelForCausalLM.from_pretrained('/path/to/model/', load_in_low_bit="sym_int8")
```
*See the complete example [here](example/transformers/transformers_low_bit/).*
>**Notes**: Currently only llama/bloom/gptneox/starcoder/chatglm model families are supported; you may use the corresponding API to load the converted model. (For other models, you can use the Transformers INT4 format as described above).
##### 2. Native INT4 model
You may also convert Hugging Face *Transformers* models into native INT4 model format for maximum performance as follows.
>**Notes**: Currently only llama/bloom/gptneox/starcoder/chatglm model families are supported; for other models, you may use the Hugging Face `transformers` model format as described above).
```python
#convert the model
from bigdl.llm import llm_convert
bigdl_llm_path = llm_convert(model='/path/to/model/',
outfile='/path/to/output/', outtype='int4', model_family="llama")
```python
#convert the model
from bigdl.llm import llm_convert
bigdl_llm_path = llm_convert(model='/path/to/model/',
outfile='/path/to/output/', outtype='int4', model_family="llama")
#load the converted model
#switch to ChatGLMForCausalLM/GptneoxForCausalLM/BloomForCausalLM/StarcoderForCausalLM to load other models
from bigdl.llm.transformers import LlamaForCausalLM
llm = LlamaForCausalLM.from_pretrained("/path/to/output/model.bin", native=True, ...)
#load the converted model
#switch to ChatGLMForCausalLM/GptneoxForCausalLM/BloomForCausalLM/StarcoderForCausalLM to load other models
from bigdl.llm.transformers import LlamaForCausalLM
llm = LlamaForCausalLM.from_pretrained("/path/to/output/model.bin", native=True, ...)
#run the converted model
input_ids = llm.tokenize(prompt)
output_ids = llm.generate(input_ids, ...)
output = llm.batch_decode(output_ids)
```
#run the converted model
input_ids = llm.tokenize(prompt)
output_ids = llm.generate(input_ids, ...)
output = llm.batch_decode(output_ids)
```
See the complete example [here](example/transformers/native_int4/native_int4_pipeline.py).
See the complete example [here](example/transformers/native_int4/native_int4_pipeline.py).
#### LangChain API
##### 3. LangChain API
You may run the models using the LangChain API in `bigdl-llm`.
- **Using Hugging Face `transformers` INT4 format**
- **Using Hugging Face `transformers` model**
You may run any Hugging Face *Transformers* model (with INT4 optimiztions applied) using the LangChain API as follows:
@ -178,15 +204,11 @@ You may run the models using the LangChain API in `bigdl-llm`.
```
See the examples [here](example/langchain/transformers_int4).
- **Using native INT4 format**
- **Using native INT4 model**
You may also convert Hugging Face *Transformers* models into *native INT4* format, and then run the converted models using the LangChain API as follows.
>**Notes**:
>* Currently only llama/bloom/gptneox/starcoder/chatglm model families are supported; for other models, you may use the Hugging Face `transformers` INT4 format as described above).
>* You may choose the corresponding API developed for specific native models to load the converted model.
>**Notes**:* Currently only llama/bloom/gptneox/starcoder/chatglm model families are supported; for other models, you may use the Hugging Face `transformers` model format as described above).
```python
from bigdl.llm.langchain.llms import LlamaLLM
@ -204,43 +226,8 @@ You may run the models using the LangChain API in `bigdl-llm`.
See the examples [here](example/langchain/native_int4).
#### CLI Tool
>**Note**: Currently `bigdl-llm` CLI supports *LLaMA* (e.g., *vicuna*), *GPT-NeoX* (e.g., *redpajama*), *BLOOM* (e.g., *pheonix*) and *GPT2* (e.g., *starcoder*) model architecture; for other models, you may use the `transformers`-style or LangChain APIs.
- ##### Convert model
You may convert the downloaded model into native INT4 format using `llm-convert`.
```bash
#convert PyTorch (fp16 or fp32) model;
#llama/bloom/gptneox/starcoder model family is currently supported
llm-convert "/path/to/model/" --model-format pth --model-family "bloom" --outfile "/path/to/output/"
#convert GPTQ-4bit model
#only llama model family is currently supported
llm-convert "/path/to/model/" --model-format gptq --model-family "llama" --outfile "/path/to/output/"
```
- ##### Run model
You may run the converted model using `llm-cli` or `llm-chat` (*built on top of `main.cpp` in [llama.cpp](https://github.com/ggerganov/llama.cpp)*)
```bash
#help
#llama/bloom/gptneox/starcoder model family is currently supported
llm-cli -x gptneox -h
#text completion
#llama/bloom/gptneox/starcoder model family is currently supported
llm-cli -t 16 -x gptneox -m "/path/to/output/model.bin" -p 'Once upon a time,'
#chat mode
#llama/gptneox model family is currently supported
llm-chat -m "/path/to/output/model.bin" -x llama
```
#### CLI Tool
>**Note**: Currently `bigdl-llm` CLI supports *LLaMA* (e.g., *vicuna*), *GPT-NeoX* (e.g., *redpajama*), *BLOOM* (e.g., *pheonix*) and *GPT2* (e.g., *starcoder*) model architecture; for other models, you may use the `transformers`-style or LangChain APIs.
##### 4. CLI Tool
>**Note**: Currently `bigdl-llm` CLI supports *LLaMA* (e.g., *vicuna*), *GPT-NeoX* (e.g., *redpajama*), *BLOOM* (e.g., *pheonix*) and *GPT2* (e.g., *starcoder*) model architecture; for other models, you may use the Hugging Face `transformers` or LangChain APIs.
- ##### Convert model
@ -279,7 +266,7 @@ See the inital `bigdl-llm` API Doc [here](https://bigdl.readthedocs.io/en/latest
[^1]: Performance varies by use, configuration and other factors. `bigdl-llm` may not optimize to the same degree for non-Intel products. Learn more at www.Intel.com/PerformanceIndex.
### `bigdl-llm` Dependencies
### `bigdl-llm` Dependency
The native code/lib in `bigdl-llm` has been built using the following tools.
Note that lower `LIBC` version on your Linux system may be incompatible with `bigdl-llm`.

View file

@ -1,4 +1,4 @@
# Baichuan
# Baichuan2
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Baichuan2 models. For illustration purposes, we utilize the [baichuan-inc/Baichuan2-13B-Chat](https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat) as a reference Baichuan model.
## 0. Requirements