Experiment XPU QLora Finetuning (#8937)
* Support xpu finetuning * support xpu finetuning * fix style * fix style * fix style * refine example * add readme * refine readme * refine api * fix fp16 * fix example * refactor * fix style * fix compute type * add qlora * refine training args * fix example * fix style * fast path forinference * address comments * refine readme * revert lint
This commit is contained in:
parent
51518e029d
commit
c88f6ec457
6 changed files with 373 additions and 8 deletions
50
python/llm/example/gpu/qlora_finetuning/README.md
Normal file
50
python/llm/example/gpu/qlora_finetuning/README.md
Normal file
|
|
@ -0,0 +1,50 @@
|
||||||
|
# Q-Lora (experimental support)
|
||||||
|
|
||||||
|
This example demonstrates how to finetune a llama2-7b model use Big-LLM 4bit optimizations using [Intel GPUs](../README.md).
|
||||||
|
|
||||||
|
## 0. Requirements
|
||||||
|
To run this example with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||||||
|
|
||||||
|
## Example: Finetune llama2-7b using qlora
|
||||||
|
|
||||||
|
This example is ported from [bnb-4bit-training](https://colab.research.google.com/drive/1VoYNfYDKcKRQRor98Zbf2-9VQTtGJ24k?usp=sharing)
|
||||||
|
|
||||||
|
### 1. Install
|
||||||
|
|
||||||
|
```bash
|
||||||
|
conda create -n llm python=3.9
|
||||||
|
conda activate llm
|
||||||
|
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
|
||||||
|
# you can install specific ipex/torch version for your need
|
||||||
|
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
|
||||||
|
pip install git+https://github.com/huggingface/transformers.git@95fe0f5
|
||||||
|
pip install peft==0.5.0
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. Configures OneAPI environment variables
|
||||||
|
```bash
|
||||||
|
source /opt/intel/oneapi/setvars.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
### 3. Run
|
||||||
|
|
||||||
|
```
|
||||||
|
python ./qlora_finetuning.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH
|
||||||
|
```
|
||||||
|
|
||||||
|
### Sample Output
|
||||||
|
```log
|
||||||
|
{'loss': 1.6134, 'learning_rate': 0.0002, 'epoch': 0.03}
|
||||||
|
{'loss': 1.3038, 'learning_rate': 0.00017777777777777779, 'epoch': 0.06}
|
||||||
|
{'loss': 1.2634, 'learning_rate': 0.00015555555555555556, 'epoch': 0.1}
|
||||||
|
{'loss': 1.2389, 'learning_rate': 0.00013333333333333334, 'epoch': 0.13}
|
||||||
|
{'loss': 1.0399, 'learning_rate': 0.00011111111111111112, 'epoch': 0.16}
|
||||||
|
{'loss': 1.0406, 'learning_rate': 8.888888888888889e-05, 'epoch': 0.19}
|
||||||
|
{'loss': 1.3114, 'learning_rate': 6.666666666666667e-05, 'epoch': 0.22}
|
||||||
|
{'loss': 0.9876, 'learning_rate': 4.4444444444444447e-05, 'epoch': 0.26}
|
||||||
|
{'loss': 1.1406, 'learning_rate': 2.2222222222222223e-05, 'epoch': 0.29}
|
||||||
|
{'loss': 1.1728, 'learning_rate': 0.0, 'epoch': 0.32}
|
||||||
|
{'train_runtime': 225.8005, 'train_samples_per_second': 3.543, 'train_steps_per_second': 0.886, 'train_loss': 1.211241865158081, 'epoch': 0.32}
|
||||||
|
100%|██████████████████████████████████████████████████████████████████████████████████████████████████| 200/200 [03:45<00:00, 1.13s/it]
|
||||||
|
TrainOutput(global_step=200, training_loss=1.211241865158081, metrics={'train_runtime': 225.8005, 'train_samples_per_second': 3.543, 'train_steps_per_second': 0.886, 'train_loss': 1.211241865158081, 'epoch': 0.32})
|
||||||
|
```
|
||||||
84
python/llm/example/gpu/qlora_finetuning/qlora_finetuning.py
Normal file
84
python/llm/example/gpu/qlora_finetuning/qlora_finetuning.py
Normal file
|
|
@ -0,0 +1,84 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import os
|
||||||
|
os.environ["ACCELERATE_USE_IPEX"] = "true"
|
||||||
|
os.environ["ACCELERATE_USE_XPU"] = "true"
|
||||||
|
|
||||||
|
import transformers
|
||||||
|
from transformers import LlamaTokenizer
|
||||||
|
|
||||||
|
from peft import LoraConfig
|
||||||
|
import intel_extension_for_pytorch as ipex
|
||||||
|
from bigdl.llm.transformers.qlora import get_peft_model, prepare_model_for_kbit_training
|
||||||
|
from bigdl.llm.transformers import AutoModelForCausalLM
|
||||||
|
from datasets import load_dataset
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model')
|
||||||
|
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-hf",
|
||||||
|
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
|
||||||
|
', or the path to the huggingface checkpoint folder')
|
||||||
|
parser.add_argument('--dataset', type=str, default="Abirate/english_quotes")
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
model_path = args.repo_id_or_model_path
|
||||||
|
dataset_path = args.dataset
|
||||||
|
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
|
|
||||||
|
data = load_dataset(dataset_path)
|
||||||
|
data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True)
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(model_path,
|
||||||
|
load_in_4bit=True,
|
||||||
|
optimize_model=False,
|
||||||
|
modules_to_not_convert=["lm_head"],)
|
||||||
|
model = model.to('xpu')
|
||||||
|
model.gradient_checkpointing_enable()
|
||||||
|
model = prepare_model_for_kbit_training(model)
|
||||||
|
config = LoraConfig(
|
||||||
|
r=8,
|
||||||
|
lora_alpha=32,
|
||||||
|
target_modules=["q_proj", "k_proj", "v_proj"],
|
||||||
|
lora_dropout=0.05,
|
||||||
|
bias="none",
|
||||||
|
task_type="CAUSAL_LM"
|
||||||
|
)
|
||||||
|
model = get_peft_model(model, config)
|
||||||
|
tokenizer.pad_token_id = 0
|
||||||
|
tokenizer.padding_side = "left"
|
||||||
|
trainer = transformers.Trainer(
|
||||||
|
model=model,
|
||||||
|
train_dataset=data["train"],
|
||||||
|
args=transformers.TrainingArguments(
|
||||||
|
per_device_train_batch_size=4,
|
||||||
|
gradient_accumulation_steps= 1,
|
||||||
|
warmup_steps=20,
|
||||||
|
max_steps=200,
|
||||||
|
learning_rate=2e-4,
|
||||||
|
fp16=False, # fp16 is not supported yet
|
||||||
|
logging_steps=20,
|
||||||
|
output_dir="outputs",
|
||||||
|
optim="adamw_hf", # paged_adamw_8bit is not supported yet
|
||||||
|
# gradient_checkpointing=True, # can further reduce memory but slower
|
||||||
|
),
|
||||||
|
data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
|
||||||
|
)
|
||||||
|
model.config.use_cache = False # silence the warnings. Please re-enable for inference!
|
||||||
|
result = trainer.train()
|
||||||
|
print(result)
|
||||||
|
|
@ -99,8 +99,9 @@ def _replace_with_low_bit_linear(model, qtype, modules_to_not_convert=None,
|
||||||
|
|
||||||
|
|
||||||
def ggml_convert_low_bit(model, qtype, optimize_model=True,
|
def ggml_convert_low_bit(model, qtype, optimize_model=True,
|
||||||
convert_shape_only=False, device="cpu"):
|
convert_shape_only=False, device="cpu",
|
||||||
modules_to_not_convert = [] # ["lm_head"]
|
modules_to_not_convert=None):
|
||||||
|
modules_to_not_convert = [] if modules_to_not_convert is None else modules_to_not_convert
|
||||||
model, has_been_replaced = _replace_with_low_bit_linear(
|
model, has_been_replaced = _replace_with_low_bit_linear(
|
||||||
model, qtype, modules_to_not_convert,
|
model, qtype, modules_to_not_convert,
|
||||||
None, convert_shape_only,
|
None, convert_shape_only,
|
||||||
|
|
|
||||||
|
|
@ -284,8 +284,38 @@ def ggml_matmul_src1_x_src0_t(src0: torch.Tensor,
|
||||||
return result_t
|
return result_t
|
||||||
|
|
||||||
|
|
||||||
|
class MatMulLowBit(torch.autograd.Function):
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def forward(ctx, A, weight):
|
||||||
|
ctx.is_empty = False
|
||||||
|
import linear_q4_0
|
||||||
|
result = linear_q4_0.forward_new(A, weight.data, weight.qtype)
|
||||||
|
if any(ctx.needs_input_grad[:2]):
|
||||||
|
ctx.tensors = (A, weight)
|
||||||
|
else:
|
||||||
|
ctx.tensors = (None, None)
|
||||||
|
return result
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def backward(ctx, grad_output):
|
||||||
|
import linear_q4_0
|
||||||
|
if ctx.is_empty:
|
||||||
|
bias_grad = None if ctx.bias is None else torch.zeros_like(ctx.bias)
|
||||||
|
return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, bias_grad, None
|
||||||
|
req_gradA, _ = ctx.needs_input_grad
|
||||||
|
A, weight = ctx.tensors
|
||||||
|
grad_A, grad_weight = None, None
|
||||||
|
if req_gradA:
|
||||||
|
dequant_weight = linear_q4_0.dequant(A, weight.data, weight.qtype)
|
||||||
|
grad_A = torch.matmul(grad_output, dequant_weight.reshape(weight._shape))
|
||||||
|
|
||||||
|
return grad_A, grad_weight
|
||||||
|
|
||||||
|
|
||||||
class LowBitLinear(nn.Linear):
|
class LowBitLinear(nn.Linear):
|
||||||
def __init__(self, input_features, output_features, qtype, bias=True):
|
def __init__(self, input_features, output_features, qtype, bias=True,
|
||||||
|
conver_to_half=True):
|
||||||
super().__init__(input_features, output_features, bias)
|
super().__init__(input_features, output_features, bias)
|
||||||
self.weight = FP4Params(self.weight.data,
|
self.weight = FP4Params(self.weight.data,
|
||||||
requires_grad=False,
|
requires_grad=False,
|
||||||
|
|
@ -295,6 +325,7 @@ class LowBitLinear(nn.Linear):
|
||||||
self.weight_shape = (self.out_len, self.in_len)
|
self.weight_shape = (self.out_len, self.in_len)
|
||||||
self.weight_length = self.out_len * self.in_len
|
self.weight_length = self.out_len * self.in_len
|
||||||
self.qtype = qtype
|
self.qtype = qtype
|
||||||
|
self.conver_to_half = conver_to_half
|
||||||
|
|
||||||
def forward(self, x: torch.Tensor):
|
def forward(self, x: torch.Tensor):
|
||||||
if self.bias is not None and self.bias.dtype != x.dtype:
|
if self.bias is not None and self.bias.dtype != x.dtype:
|
||||||
|
|
@ -317,10 +348,14 @@ class LowBitLinear(nn.Linear):
|
||||||
if x_2d.is_contiguous() is False:
|
if x_2d.is_contiguous() is False:
|
||||||
x_2d = x_2d.contiguous()
|
x_2d = x_2d.contiguous()
|
||||||
# current workaround to reduce first token latency of fp32 input
|
# current workaround to reduce first token latency of fp32 input
|
||||||
if x_2d.shape[0] > 1 and x_2d.dtype == torch.float32:
|
# sometimes fp16 cause nan and training instability
|
||||||
|
# disable the conversion when training
|
||||||
|
if self.conver_to_half and x_2d.shape[0] > 1 and x_2d.dtype == torch.float32:
|
||||||
x_2d = x_2d.half()
|
x_2d = x_2d.half()
|
||||||
# input format of linear_q4.forward is 1: input, 2: weight
|
if self.training and x_2d.requires_grad:
|
||||||
result = linear_q4_0.forward_new(x_2d, x0, self.qtype)
|
result = MatMulLowBit.apply(x_2d, self.weight)
|
||||||
|
else:
|
||||||
|
result = linear_q4_0.forward_new(x_2d, self.weight.data, self.weight.qtype)
|
||||||
new_shape = x_shape[:-1] + (self.out_len,)
|
new_shape = x_shape[:-1] + (self.out_len,)
|
||||||
result = result.view(new_shape)
|
result = result.view(new_shape)
|
||||||
if self.bias is not None:
|
if self.bias is not None:
|
||||||
|
|
|
||||||
|
|
@ -108,6 +108,7 @@ class _BaseAutoModelClass:
|
||||||
# In case it needs a second try,
|
# In case it needs a second try,
|
||||||
# `from_pretrained`` may pop items out in dict
|
# `from_pretrained`` may pop items out in dict
|
||||||
# and lead to args missing.
|
# and lead to args missing.
|
||||||
|
modules_to_not_convert = kwargs.pop("modules_to_not_convert", None)
|
||||||
_args = copy.deepcopy(args)
|
_args = copy.deepcopy(args)
|
||||||
_kwargs = copy.deepcopy(kwargs)
|
_kwargs = copy.deepcopy(kwargs)
|
||||||
try:
|
try:
|
||||||
|
|
@ -119,7 +120,8 @@ class _BaseAutoModelClass:
|
||||||
model = cls.HF_Model.from_pretrained(*_args, **_kwargs)
|
model = cls.HF_Model.from_pretrained(*_args, **_kwargs)
|
||||||
model.config.update({"bigdl_lcmu_enabled": False})
|
model.config.update({"bigdl_lcmu_enabled": False})
|
||||||
model = model.to("cpu")
|
model = model.to("cpu")
|
||||||
model = ggml_convert_low_bit(model, qtype, optimize_model)
|
model = ggml_convert_low_bit(model, qtype, optimize_model,
|
||||||
|
modules_to_not_convert=modules_to_not_convert)
|
||||||
model.config.update({"bigdl_transformers_low_bit": q_k})
|
model.config.update({"bigdl_transformers_low_bit": q_k})
|
||||||
model.config.update({"tie_word_embeddings": False})
|
model.config.update({"tie_word_embeddings": False})
|
||||||
|
|
||||||
|
|
@ -155,6 +157,7 @@ class _BaseAutoModelClass:
|
||||||
import copy
|
import copy
|
||||||
import os
|
import os
|
||||||
|
|
||||||
|
modules_to_not_convert = kwargs.pop("modules_to_not_convert", None)
|
||||||
# Autofactory
|
# Autofactory
|
||||||
trust_remote_code = kwargs.pop("trust_remote_code", None)
|
trust_remote_code = kwargs.pop("trust_remote_code", None)
|
||||||
kwargs_orig = copy.deepcopy(kwargs)
|
kwargs_orig = copy.deepcopy(kwargs)
|
||||||
|
|
@ -264,7 +267,8 @@ class _BaseAutoModelClass:
|
||||||
|
|
||||||
# Loading args may differ based on their usage
|
# Loading args may differ based on their usage
|
||||||
quant_device = "meta" if bigdl_lcmu_enabled else "cpu"
|
quant_device = "meta" if bigdl_lcmu_enabled else "cpu"
|
||||||
model = ggml_convert_low_bit(model, qtype, optimize_model, device=quant_device)
|
model = ggml_convert_low_bit(model, qtype, optimize_model, device=quant_device,
|
||||||
|
modules_to_not_convert=modules_to_not_convert)
|
||||||
|
|
||||||
if is_sharded:
|
if is_sharded:
|
||||||
loaded_state_dict_keys = sharded_metadata["all_checkpoint_keys"]
|
loaded_state_dict_keys = sharded_metadata["all_checkpoint_keys"]
|
||||||
|
|
|
||||||
191
python/llm/src/bigdl/llm/transformers/qlora.py
Normal file
191
python/llm/src/bigdl/llm/transformers/qlora.py
Normal file
|
|
@ -0,0 +1,191 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
# Some parts of this file is adapted from
|
||||||
|
# https://github.com/huggingface/peft/blob/v0.5.0/src/peft/tuners/lora.py
|
||||||
|
#
|
||||||
|
# coding=utf-8
|
||||||
|
# Copyright 2023-present the HuggingFace Inc. team.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from bigdl.llm.transformers.low_bit_linear import LowBitLinear
|
||||||
|
from peft.tuners.lora import LoraLayer
|
||||||
|
from bigdl.llm.utils.common import invalidInputError
|
||||||
|
|
||||||
|
|
||||||
|
class LoraLowBitLinear(LowBitLinear, LoraLayer):
|
||||||
|
# Lora implemented in a dense layer
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
adapter_name,
|
||||||
|
in_features,
|
||||||
|
out_features,
|
||||||
|
r: int = 0,
|
||||||
|
lora_alpha: int = 1,
|
||||||
|
lora_dropout: float = 0.0,
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
|
LowBitLinear.__init__(
|
||||||
|
self,
|
||||||
|
in_features,
|
||||||
|
out_features,
|
||||||
|
qtype=kwargs.get("qtype"),
|
||||||
|
bias=kwargs.get("bias", True),
|
||||||
|
conver_to_half=False,
|
||||||
|
)
|
||||||
|
LoraLayer.__init__(self, in_features=in_features, out_features=out_features)
|
||||||
|
|
||||||
|
# Freezing the pre-trained weight matrix
|
||||||
|
self.weight.requires_grad = False
|
||||||
|
|
||||||
|
init_lora_weights = kwargs.pop("init_lora_weights", True)
|
||||||
|
self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights)
|
||||||
|
self.active_adapter = adapter_name
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor):
|
||||||
|
result = super().forward(x)
|
||||||
|
|
||||||
|
if self.disable_adapters or self.active_adapter not in self.lora_A.keys():
|
||||||
|
return result
|
||||||
|
elif self.r[self.active_adapter] > 0:
|
||||||
|
result = result.clone()
|
||||||
|
if not torch.is_autocast_enabled():
|
||||||
|
expected_dtype = result.dtype
|
||||||
|
x = x.to(self.lora_A[self.active_adapter].weight.dtype)
|
||||||
|
output = (
|
||||||
|
self.lora_B[self.active_adapter](
|
||||||
|
self.lora_A[self.active_adapter](self.lora_dropout[self.active_adapter](x))
|
||||||
|
).to(expected_dtype)
|
||||||
|
* self.scaling[self.active_adapter]
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
output = (
|
||||||
|
self.lora_B[self.active_adapter](
|
||||||
|
self.lora_A[self.active_adapter](self.lora_dropout[self.active_adapter](x))
|
||||||
|
)
|
||||||
|
* self.scaling[self.active_adapter]
|
||||||
|
)
|
||||||
|
result += output
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _create_new_module(lora_config, adapter_name, target, **kwargs):
|
||||||
|
|
||||||
|
bias = kwargs.pop("bias", False)
|
||||||
|
|
||||||
|
if isinstance(target, LowBitLinear):
|
||||||
|
low_bit_kwargs = kwargs.copy()
|
||||||
|
low_bit_kwargs.update(
|
||||||
|
{
|
||||||
|
"qtype": target.qtype,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
new_module = LoraLowBitLinear(adapter_name,
|
||||||
|
target.in_features,
|
||||||
|
target.out_features,
|
||||||
|
bias=bias,
|
||||||
|
**low_bit_kwargs)
|
||||||
|
else:
|
||||||
|
invalidInputError(False,
|
||||||
|
f"Target module {target} is not supported. "
|
||||||
|
f"Currently, only `LowBitLinear` are supported.")
|
||||||
|
|
||||||
|
return new_module
|
||||||
|
|
||||||
|
|
||||||
|
from peft.tuners.lora import LoraModel
|
||||||
|
|
||||||
|
|
||||||
|
def get_peft_model(*args, **kwargs):
|
||||||
|
old_create_new_module = LoraModel._create_new_module
|
||||||
|
LoraModel._create_new_module = _create_new_module
|
||||||
|
try:
|
||||||
|
from peft import get_peft_model as get_peft_model_original
|
||||||
|
model = get_peft_model_original(*args, **kwargs)
|
||||||
|
finally:
|
||||||
|
LoraModel._create_new_module = old_create_new_module
|
||||||
|
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
def prepare_model_for_kbit_training(model, use_gradient_checkpointing=True):
|
||||||
|
r"""
|
||||||
|
This method wraps the entire protocol for preparing a model before running a training.
|
||||||
|
This includes:
|
||||||
|
1- Cast the layernorm in fp32
|
||||||
|
2- making output embedding layer require grads
|
||||||
|
3- Add the upcasting of the lm head to fp32
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model, (`transformers.PreTrainedModel`):
|
||||||
|
The loaded model from `transformers`
|
||||||
|
"""
|
||||||
|
|
||||||
|
is_gptq_quantized = getattr(model, "quantization_method", None) == "gptq"
|
||||||
|
for name, param in model.named_parameters():
|
||||||
|
# freeze base model's layers
|
||||||
|
param.requires_grad = False
|
||||||
|
|
||||||
|
if not is_gptq_quantized:
|
||||||
|
# cast all non INT8 parameters to fp32
|
||||||
|
for param in model.parameters():
|
||||||
|
if (param.dtype == torch.float16) or (param.dtype == torch.bfloat16):
|
||||||
|
param.data = param.data.to(torch.float32)
|
||||||
|
|
||||||
|
if use_gradient_checkpointing:
|
||||||
|
# For backward compatibility
|
||||||
|
if hasattr(model, "enable_input_require_grads"):
|
||||||
|
model.enable_input_require_grads()
|
||||||
|
else:
|
||||||
|
|
||||||
|
def make_inputs_require_grad(module, input, output):
|
||||||
|
output.requires_grad_(True)
|
||||||
|
|
||||||
|
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
|
||||||
|
|
||||||
|
# enable gradient checkpointing for memory efficiency
|
||||||
|
model.gradient_checkpointing_enable()
|
||||||
|
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
class PeftModel:
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def from_pretrained(*args,
|
||||||
|
**kwargs):
|
||||||
|
old_create_new_module = LoraModel._create_new_module
|
||||||
|
LoraModel._create_new_module = _create_new_module
|
||||||
|
from peft import PeftModel
|
||||||
|
try:
|
||||||
|
model = PeftModel.from_pretrained(*args, **kwargs)
|
||||||
|
finally:
|
||||||
|
LoraModel._create_new_module = old_create_new_module
|
||||||
|
|
||||||
|
return model
|
||||||
Loading…
Reference in a new issue