Add Qwen1.5-7B-Chat (#10113)
* add Qwen1.5-7B-Chat * modify Qwen1.5 example * update README * update prompt format * update folder name and example README * add Chinese prompt sample output * update link in README * correct the link * update transformer version
This commit is contained in:
		
							parent
							
								
									56ad781f2f
								
							
						
					
					
						commit
						c7e839e66c
					
				
					 10 changed files with 797 additions and 0 deletions
				
			
		| 
						 | 
				
			
			@ -186,6 +186,7 @@ Over 40 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
 | 
			
		|||
| Bark | [link](python/llm/example/CPU/PyTorch-Models/Model/bark) | [link](python/llm/example/GPU/PyTorch-Models/Model/bark) |
 | 
			
		||||
| SpeechT5 |  | [link](python/llm/example/GPU/PyTorch-Models/Model/speech-t5) |
 | 
			
		||||
| Ziya-Coding-34B-v1.0 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/ziya) | |
 | 
			
		||||
| Qwen1.5 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen1.5) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/qwen1.5) |
 | 
			
		||||
 | 
			
		||||
***For more details, please refer to the `bigdl-llm` [Document](https://test-bigdl-llm.readthedocs.io/en/main/doc/LLM/index.html), [Readme](python/llm), [Tutorial](https://github.com/intel-analytics/bigdl-llm-tutorial) and [API Doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/LLM/index.html).***
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -82,6 +82,8 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
 | 
			
		|||
| Bark | [link](example/CPU/PyTorch-Models/Model/bark) | [link](example/GPU/PyTorch-Models/Model/bark) |
 | 
			
		||||
| SpeechT5 |  | [link](example/GPU/PyTorch-Models/Model/speech-t5) |
 | 
			
		||||
| Ziya-Coding-34B-v1.0 | [link](example/CPU/HF-Transformers-AutoModels/Model/ziya) | |
 | 
			
		||||
| Qwen1.5 | [link](example/CPU/HF-Transformers-AutoModels/Model/qwen1.5) | [link](example/GPU/HF-Transformers-AutoModels/Model/qwen1.5) |
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
### Working with `bigdl-llm`
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -0,0 +1,87 @@
 | 
			
		|||
# Qwen1.5
 | 
			
		||||
 | 
			
		||||
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Qwen1.5 models. For illustration purposes, we utilize the [Qwen/Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat) as a reference Qwen1.5 model.
 | 
			
		||||
 | 
			
		||||
## 0. Requirements
 | 
			
		||||
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
 | 
			
		||||
 | 
			
		||||
## Example: Predict Tokens using `generate()` API
 | 
			
		||||
In the example [generate.py](./generate.py), we show a basic use case for a Qwen model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
 | 
			
		||||
### 1. Install
 | 
			
		||||
We suggest using conda to manage environment:
 | 
			
		||||
```bash
 | 
			
		||||
conda create -n llm python=3.9
 | 
			
		||||
conda activate llm
 | 
			
		||||
 | 
			
		||||
pip install --pre --upgrade bigdl-llm[all] # install bigdl-llm with 'all' option
 | 
			
		||||
pip install transformers==4.37.0 # install the transformers which support Qwen2
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 2. Run
 | 
			
		||||
```
 | 
			
		||||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
Arguments info:
 | 
			
		||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Qwen model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'Qwen/Qwen1.5-7B-Chat'`.
 | 
			
		||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
 | 
			
		||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
			
		||||
 | 
			
		||||
> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
 | 
			
		||||
>
 | 
			
		||||
> Please select the appropriate size of the Qwen model based on the capabilities of your machine.
 | 
			
		||||
 | 
			
		||||
#### 2.1 Client
 | 
			
		||||
On client Windows machine, it is recommended to run directly with full utilization of all cores:
 | 
			
		||||
```powershell
 | 
			
		||||
python ./generate.py 
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 2.2 Server
 | 
			
		||||
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
 | 
			
		||||
 | 
			
		||||
E.g. on Linux,
 | 
			
		||||
```bash
 | 
			
		||||
# set BigDL-LLM env variables
 | 
			
		||||
source bigdl-llm-init
 | 
			
		||||
 | 
			
		||||
# e.g. for a server with 48 cores per socket
 | 
			
		||||
export OMP_NUM_THREADS=48
 | 
			
		||||
numactl -C 0-47 -m 0 python ./generate.py
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 2.3 Sample Output
 | 
			
		||||
#### [Qwen/Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat)
 | 
			
		||||
```log
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
-------------------- Prompt --------------------
 | 
			
		||||
<|im_start|>system
 | 
			
		||||
You are a helpful assistant.<|im_end|>
 | 
			
		||||
<|im_start|>user
 | 
			
		||||
AI是什么?<|im_end|>
 | 
			
		||||
<|im_start|>assistant
 | 
			
		||||
-------------------- Output --------------------
 | 
			
		||||
<|im_start|>system
 | 
			
		||||
You are a helpful assistant.<|im_end|>
 | 
			
		||||
<|im_start|>user
 | 
			
		||||
AI是什么?<|im_end|>
 | 
			
		||||
<|im_start|>assistant
 | 
			
		||||
人工智能(AI)是指计算机科学的一个分支,旨在开发能够执行通常需要人类智能的任务的算法和系统。这些任务包括但不限于理解自然语言、
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
```log
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
-------------------- Prompt --------------------
 | 
			
		||||
<|im_start|>system
 | 
			
		||||
You are a helpful assistant.<|im_end|>
 | 
			
		||||
<|im_start|>user
 | 
			
		||||
What is AI?<|im_end|>
 | 
			
		||||
<|im_start|>assistant
 | 
			
		||||
-------------------- Output --------------------
 | 
			
		||||
<|im_start|>system
 | 
			
		||||
You are a helpful assistant.<|im_end|>
 | 
			
		||||
<|im_start|>user
 | 
			
		||||
What is AI?<|im_end|>
 | 
			
		||||
<|im_start|>assistant
 | 
			
		||||
AI, or artificial intelligence, refers to the simulation of human intelligence in machines that are designed to perform tasks that typically require human cognition, such as learning, reasoning
 | 
			
		||||
```
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,77 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import time
 | 
			
		||||
import argparse
 | 
			
		||||
import numpy as np
 | 
			
		||||
 | 
			
		||||
from transformers import AutoTokenizer
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    parser = argparse.ArgumentParser(description='Qwen1.5-7B-Chat')
 | 
			
		||||
    parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen1.5-7B-Chat",
 | 
			
		||||
                        help='The huggingface repo id for the Qwen1.5 model to be downloaded'
 | 
			
		||||
                             ', or the path to the huggingface checkpoint folder')
 | 
			
		||||
    parser.add_argument('--prompt', type=str, default="AI是什么?",
 | 
			
		||||
                        help='Prompt to infer') 
 | 
			
		||||
    parser.add_argument('--n-predict', type=int, default=32,
 | 
			
		||||
                        help='Max tokens to predict')
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
    from bigdl.llm.transformers import AutoModelForCausalLM
 | 
			
		||||
    model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
			
		||||
                                                 load_in_4bit=True,
 | 
			
		||||
                                                 trust_remote_code=True)
 | 
			
		||||
 | 
			
		||||
    # Load tokenizer
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
			
		||||
                                              trust_remote_code=True)
 | 
			
		||||
    
 | 
			
		||||
    prompt = args.prompt
 | 
			
		||||
    
 | 
			
		||||
    # Generate predicted tokens
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        messages = [
 | 
			
		||||
            {"role": "system", "content": "You are a helpful assistant."},
 | 
			
		||||
            {"role": "user", "content": prompt}
 | 
			
		||||
            ]
 | 
			
		||||
        text = tokenizer.apply_chat_template(
 | 
			
		||||
            messages,
 | 
			
		||||
            tokenize=False,
 | 
			
		||||
            add_generation_prompt=True
 | 
			
		||||
            )
 | 
			
		||||
        model_inputs = tokenizer([text], return_tensors="pt")
 | 
			
		||||
        st = time.time()
 | 
			
		||||
        generated_ids = model.generate(
 | 
			
		||||
            model_inputs.input_ids,
 | 
			
		||||
            max_new_tokens=args.n_predict
 | 
			
		||||
            )
 | 
			
		||||
        end = time.time()
 | 
			
		||||
        generated_ids = [
 | 
			
		||||
            output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
 | 
			
		||||
            ]
 | 
			
		||||
 | 
			
		||||
        response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
 | 
			
		||||
        print(f'Inference time: {end-st} s')
 | 
			
		||||
        print('-'*20, 'Prompt', '-'*20)
 | 
			
		||||
        print(prompt)
 | 
			
		||||
        print('-'*20, 'Output', '-'*20)
 | 
			
		||||
        print(response)
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,86 @@
 | 
			
		|||
# Qwen1.5
 | 
			
		||||
In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate Qwen1.5 models. For illustration purposes, we utilize the [Qwen/Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat) as reference Qwen1.5 model.
 | 
			
		||||
 | 
			
		||||
## Requirements
 | 
			
		||||
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
 | 
			
		||||
 | 
			
		||||
## Example: Predict Tokens using `generate()` API
 | 
			
		||||
In the example [generate.py](./generate.py), we show a basic use case for a Qwen1.5 model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
 | 
			
		||||
### 1. Install
 | 
			
		||||
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
 | 
			
		||||
 | 
			
		||||
After installing conda, create a Python environment for BigDL-LLM:
 | 
			
		||||
```bash
 | 
			
		||||
conda create -n llm python=3.9 # recommend to use Python 3.9
 | 
			
		||||
conda activate llm
 | 
			
		||||
 | 
			
		||||
pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
 | 
			
		||||
pip install transformers==4.37.0 # install transformers which supports Qwen2
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 2. Run
 | 
			
		||||
After setting up the Python environment, you could run the example by following steps.
 | 
			
		||||
 | 
			
		||||
#### 2.1 Client
 | 
			
		||||
On client Windows machines, it is recommended to run directly with full utilization of all cores:
 | 
			
		||||
```powershell
 | 
			
		||||
python ./generate.py --prompt 'What is AI?'
 | 
			
		||||
```
 | 
			
		||||
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
 | 
			
		||||
 | 
			
		||||
#### 2.2 Server
 | 
			
		||||
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
 | 
			
		||||
 | 
			
		||||
E.g. on Linux,
 | 
			
		||||
```bash
 | 
			
		||||
# set BigDL-LLM env variables
 | 
			
		||||
source bigdl-llm-init
 | 
			
		||||
 | 
			
		||||
# e.g. for a server with 48 cores per socket
 | 
			
		||||
export OMP_NUM_THREADS=48
 | 
			
		||||
numactl -C 0-47 -m 0 python ./generate.py --prompt 'What is AI?'
 | 
			
		||||
```
 | 
			
		||||
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
 | 
			
		||||
 | 
			
		||||
#### 2.3 Arguments Info
 | 
			
		||||
In the example, several arguments can be passed to satisfy your requirements:
 | 
			
		||||
 | 
			
		||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Qwen1.5 to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'Qwen/Qwen1.5-7B-Chat'`.
 | 
			
		||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
 | 
			
		||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
			
		||||
 | 
			
		||||
#### 2.3 Sample Output
 | 
			
		||||
#### [Qwen/Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat)
 | 
			
		||||
```log
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
-------------------- Prompt --------------------
 | 
			
		||||
<|im_start|>system
 | 
			
		||||
You are a helpful assistant.<|im_end|>
 | 
			
		||||
<|im_start|>user
 | 
			
		||||
AI是什么?<|im_end|>
 | 
			
		||||
<|im_start|>assistant
 | 
			
		||||
-------------------- Output --------------------
 | 
			
		||||
<|im_start|>system
 | 
			
		||||
You are a helpful assistant.<|im_end|>
 | 
			
		||||
<|im_start|>user
 | 
			
		||||
AI是什么?<|im_end|>
 | 
			
		||||
<|im_start|>assistant
 | 
			
		||||
AI(Artificial Intelligence)是指由计算机程序实现的智能,它使机器能够模拟人类的思考、学习和决策过程,从而解决各种复杂
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
```log
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
-------------------- Prompt --------------------
 | 
			
		||||
<|im_start|>system
 | 
			
		||||
You are a helpful assistant.<|im_end|>
 | 
			
		||||
<|im_start|>user
 | 
			
		||||
What is AI?<|im_end|>
 | 
			
		||||
<|im_start|>assistant
 | 
			
		||||
-------------------- Output --------------------
 | 
			
		||||
<|im_start|>system
 | 
			
		||||
You are a helpful assistant.<|im_end|>
 | 
			
		||||
<|im_start|>user
 | 
			
		||||
What is AI?<|im_end|>
 | 
			
		||||
<|im_start|>assistant
 | 
			
		||||
AI, or artificial intelligence, refers to the simulation of human intelligence in machines that are programmed to think, learn, and make decisions like humans. It involves the
 | 
			
		||||
```
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,78 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import time
 | 
			
		||||
import argparse
 | 
			
		||||
import numpy as np
 | 
			
		||||
 | 
			
		||||
from transformers import AutoTokenizer
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    parser = argparse.ArgumentParser(description='Qwen1.5-7B-Chat')
 | 
			
		||||
    parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen1.5-7B-Chat",
 | 
			
		||||
                        help='The huggingface repo id for the Qwen1.5 model to be downloaded'
 | 
			
		||||
                             ', or the path to the huggingface checkpoint folder')
 | 
			
		||||
    parser.add_argument('--prompt', type=str, default="AI是什么?",
 | 
			
		||||
                        help='Prompt to infer') 
 | 
			
		||||
    parser.add_argument('--n-predict', type=int, default=32,
 | 
			
		||||
                        help='Max tokens to predict')
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
    from transformers import AutoModelForCausalLM
 | 
			
		||||
    model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
			
		||||
                                                 trust_remote_code=True)
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
    # Load tokenizer
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
			
		||||
                                              trust_remote_code=True)
 | 
			
		||||
    from bigdl.llm import optimize_model
 | 
			
		||||
    model = optimize_model(model)
 | 
			
		||||
    
 | 
			
		||||
    prompt = args.prompt
 | 
			
		||||
    # Generate predicted tokens
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        messages = [
 | 
			
		||||
            {"role": "system", "content": "You are a helpful assistant."},
 | 
			
		||||
            {"role": "user", "content": prompt}
 | 
			
		||||
            ]
 | 
			
		||||
        text = tokenizer.apply_chat_template(
 | 
			
		||||
            messages,
 | 
			
		||||
            tokenize=False,
 | 
			
		||||
            add_generation_prompt=True
 | 
			
		||||
            )
 | 
			
		||||
        model_inputs = tokenizer([text], return_tensors="pt")
 | 
			
		||||
        st = time.time()
 | 
			
		||||
        generated_ids = model.generate(
 | 
			
		||||
            model_inputs.input_ids,
 | 
			
		||||
            max_new_tokens=args.n_predict
 | 
			
		||||
            )
 | 
			
		||||
        end = time.time()
 | 
			
		||||
        generated_ids = [
 | 
			
		||||
            output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
 | 
			
		||||
            ]
 | 
			
		||||
 | 
			
		||||
        response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
 | 
			
		||||
        print(f'Inference time: {end-st} s')
 | 
			
		||||
        print('-'*20, 'Prompt', '-'*20)
 | 
			
		||||
        print(prompt)
 | 
			
		||||
        print('-'*20, 'Output', '-'*20)
 | 
			
		||||
        print(response)
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,143 @@
 | 
			
		|||
# Qwen1.5
 | 
			
		||||
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Qwen1.5 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [Qwen/Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat) as a reference InternLM model.
 | 
			
		||||
 | 
			
		||||
## 0. Requirements
 | 
			
		||||
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
 | 
			
		||||
 | 
			
		||||
## Example: Predict Tokens using `generate()` API
 | 
			
		||||
In the example [generate.py](./generate.py), we show a basic use case for a Qwen1.5 model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
 | 
			
		||||
### 1. Install
 | 
			
		||||
#### 1.1 Installation on Linux
 | 
			
		||||
We suggest using conda to manage environment:
 | 
			
		||||
```bash
 | 
			
		||||
conda create -n llm python=3.9
 | 
			
		||||
conda activate llm
 | 
			
		||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
 | 
			
		||||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
 | 
			
		||||
pip install transformers==4.37.0 # install transformers which supports Qwen2
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 1.2 Installation on Windows
 | 
			
		||||
We suggest using conda to manage environment:
 | 
			
		||||
```bash
 | 
			
		||||
conda create -n llm python=3.9 libuv
 | 
			
		||||
conda activate llm
 | 
			
		||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
 | 
			
		||||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
 | 
			
		||||
pip install transformers==4.37.2 # install transformers which supports Qwen2
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 2. Configures OneAPI environment variables
 | 
			
		||||
#### 2.1 Configurations for Linux
 | 
			
		||||
```bash
 | 
			
		||||
source /opt/intel/oneapi/setvars.sh
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 2.2 Configurations for Windows
 | 
			
		||||
```cmd
 | 
			
		||||
call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat"
 | 
			
		||||
```
 | 
			
		||||
> Note: Please make sure you are using **CMD** (**Anaconda Prompt** if using conda) to run the command as PowerShell is not supported.
 | 
			
		||||
### 3. Runtime Configurations
 | 
			
		||||
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
 | 
			
		||||
#### 3.1 Configurations for Linux
 | 
			
		||||
<details>
 | 
			
		||||
 | 
			
		||||
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
export USE_XETLA=OFF
 | 
			
		||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
<details>
 | 
			
		||||
 | 
			
		||||
<summary>For Intel Data Center GPU Max Series</summary>
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
 | 
			
		||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
			
		||||
export ENABLE_SDP_FUSION=1
 | 
			
		||||
```
 | 
			
		||||
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
#### 3.2 Configurations for Windows
 | 
			
		||||
<details>
 | 
			
		||||
 | 
			
		||||
<summary>For Intel iGPU</summary>
 | 
			
		||||
 | 
			
		||||
```cmd
 | 
			
		||||
set SYCL_CACHE_PERSISTENT=1
 | 
			
		||||
set BIGDL_LLM_XMX_DISABLED=1
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
<details>
 | 
			
		||||
 | 
			
		||||
<summary>For Intel Arc™ A300-Series or Pro A60</summary>
 | 
			
		||||
 | 
			
		||||
```cmd
 | 
			
		||||
set SYCL_CACHE_PERSISTENT=1
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
<details>
 | 
			
		||||
 | 
			
		||||
<summary>For other Intel dGPU Series</summary>
 | 
			
		||||
 | 
			
		||||
There is no need to set further environment variables.
 | 
			
		||||
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
> Note: For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
 | 
			
		||||
### 4. Running examples
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
Arguments info:
 | 
			
		||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Qwen1.5 model (e.g. `Qwen/Qwen1.5-7B-Chat`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'Qwen/Qwen1.5-7B-Chat'`.
 | 
			
		||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
 | 
			
		||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
			
		||||
 | 
			
		||||
#### Sample Output
 | 
			
		||||
#### [Qwen/Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat)
 | 
			
		||||
```log
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
-------------------- Prompt --------------------
 | 
			
		||||
<|im_start|>system
 | 
			
		||||
You are a helpful assistant.<|im_end|>
 | 
			
		||||
<|im_start|>user
 | 
			
		||||
AI是什么?<|im_end|>
 | 
			
		||||
<|im_start|>assistant
 | 
			
		||||
-------------------- Output --------------------
 | 
			
		||||
<|im_start|>system
 | 
			
		||||
You are a helpful assistant.<|im_end|>
 | 
			
		||||
<|im_start|>user
 | 
			
		||||
AI是什么?<|im_end|>
 | 
			
		||||
<|im_start|>assistant
 | 
			
		||||
人工智能(AI)是指通过计算机模拟、延伸和扩展人类智能的学科,其目标是使机器具有学习、推理、感知、理解、交流
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
```log
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
-------------------- Prompt --------------------
 | 
			
		||||
<|im_start|>system
 | 
			
		||||
You are a helpful assistant.<|im_end|>
 | 
			
		||||
<|im_start|>user
 | 
			
		||||
What is AI?<|im_end|>
 | 
			
		||||
<|im_start|>assistant
 | 
			
		||||
-------------------- Output --------------------
 | 
			
		||||
<|im_start|>system
 | 
			
		||||
You are a helpful assistant.<|im_end|>
 | 
			
		||||
<|im_start|>user
 | 
			
		||||
What is AI?<|im_end|>
 | 
			
		||||
<|im_start|>assistant
 | 
			
		||||
AI, or artificial intelligence, refers to the simulation of human intelligence in machines that are programmed to perform tasks that typically require human cognition, such as learning, reasoning
 | 
			
		||||
```
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,90 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import time
 | 
			
		||||
import argparse
 | 
			
		||||
 | 
			
		||||
from transformers import AutoTokenizer
 | 
			
		||||
from bigdl.llm import optimize_model
 | 
			
		||||
import intel_extension_for_pytorch as ipex
 | 
			
		||||
import numpy as np
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    parser = argparse.ArgumentParser(description='Qwen1.5-7B-Chat')
 | 
			
		||||
    parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen1.5-7B-Chat",
 | 
			
		||||
                        help='The huggingface repo id for the Qwen1.5 model to be downloaded'
 | 
			
		||||
                             ', or the path to the huggingface checkpoint folder')
 | 
			
		||||
    parser.add_argument('--prompt', type=str, default="AI是什么?",
 | 
			
		||||
                        help='Prompt to infer') 
 | 
			
		||||
    parser.add_argument('--n-predict', type=int, default=32,
 | 
			
		||||
                        help='Max tokens to predict')
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
    from bigdl.llm.transformers import AutoModelForCausalLM
 | 
			
		||||
    # Load model in 4 bit,
 | 
			
		||||
    # which convert the relevant layers in the model into INT4 format
 | 
			
		||||
    model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
			
		||||
                                                 load_in_4bit=True,
 | 
			
		||||
                                                 trust_remote_code=True)
 | 
			
		||||
    model = model.to("xpu")
 | 
			
		||||
 | 
			
		||||
    # Load tokenizer
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
			
		||||
                                              trust_remote_code=True)
 | 
			
		||||
    
 | 
			
		||||
    prompt = args.prompt
 | 
			
		||||
 | 
			
		||||
    # Generate predicted tokens
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        messages = [
 | 
			
		||||
            {"role": "system", "content": "You are a helpful assistant."},
 | 
			
		||||
            {"role": "user", "content": prompt}
 | 
			
		||||
            ]
 | 
			
		||||
        text = tokenizer.apply_chat_template(
 | 
			
		||||
            messages,
 | 
			
		||||
            tokenize=False,
 | 
			
		||||
            add_generation_prompt=True
 | 
			
		||||
            )
 | 
			
		||||
        model_inputs = tokenizer([text], return_tensors="pt").to("xpu")
 | 
			
		||||
        # warmup
 | 
			
		||||
        generated_ids = model.generate(
 | 
			
		||||
            model_inputs.input_ids,
 | 
			
		||||
            max_new_tokens=args.n_predict
 | 
			
		||||
            )
 | 
			
		||||
        
 | 
			
		||||
        st = time.time()
 | 
			
		||||
        generated_ids = model.generate(
 | 
			
		||||
            model_inputs.input_ids,
 | 
			
		||||
            max_new_tokens=args.n_predict
 | 
			
		||||
            )
 | 
			
		||||
        torch.xpu.synchronize()
 | 
			
		||||
        end = time.time()
 | 
			
		||||
        generated_ids = generated_ids.cpu()
 | 
			
		||||
        generated_ids = [
 | 
			
		||||
            output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
 | 
			
		||||
            ]
 | 
			
		||||
 | 
			
		||||
        response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
 | 
			
		||||
        print(f'Inference time: {end-st} s')
 | 
			
		||||
        print('-'*20, 'Prompt', '-'*20)
 | 
			
		||||
        print(prompt)
 | 
			
		||||
        print('-'*20, 'Output', '-'*20)
 | 
			
		||||
        print(response)
 | 
			
		||||
							
								
								
									
										143
									
								
								python/llm/example/GPU/PyTorch-Models/Model/qwen1.5/README.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										143
									
								
								python/llm/example/GPU/PyTorch-Models/Model/qwen1.5/README.md
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,143 @@
 | 
			
		|||
# Qwen1.5
 | 
			
		||||
In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate Qwen1.5 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [Qwen/Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat) as a reference InternLM model.
 | 
			
		||||
 | 
			
		||||
## 0. Requirements
 | 
			
		||||
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
 | 
			
		||||
 | 
			
		||||
## Example: Predict Tokens using `generate()` API
 | 
			
		||||
In the example [generate.py](./generate.py), we show a basic use case for a Qwen1.5 model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
 | 
			
		||||
### 1. Install
 | 
			
		||||
#### 1.1 Installation on Linux
 | 
			
		||||
We suggest using conda to manage environment:
 | 
			
		||||
```bash
 | 
			
		||||
conda create -n llm python=3.9
 | 
			
		||||
conda activate llm
 | 
			
		||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
 | 
			
		||||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
 | 
			
		||||
pip install transformers==4.37.0 # install transformers which supports Qwen2
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 1.2 Installation on Windows
 | 
			
		||||
We suggest using conda to manage environment:
 | 
			
		||||
```bash
 | 
			
		||||
conda create -n llm python=3.9 libuv
 | 
			
		||||
conda activate llm
 | 
			
		||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
 | 
			
		||||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
 | 
			
		||||
pip install transformers==4.37.2 # install transformers which supports Qwen2
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 2. Configures OneAPI environment variables
 | 
			
		||||
#### 2.1 Configurations for Linux
 | 
			
		||||
```bash
 | 
			
		||||
source /opt/intel/oneapi/setvars.sh
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 2.2 Configurations for Windows
 | 
			
		||||
```cmd
 | 
			
		||||
call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat"
 | 
			
		||||
```
 | 
			
		||||
> Note: Please make sure you are using **CMD** (**Anaconda Prompt** if using conda) to run the command as PowerShell is not supported.
 | 
			
		||||
### 3. Runtime Configurations
 | 
			
		||||
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
 | 
			
		||||
#### 3.1 Configurations for Linux
 | 
			
		||||
<details>
 | 
			
		||||
 | 
			
		||||
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
export USE_XETLA=OFF
 | 
			
		||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
<details>
 | 
			
		||||
 | 
			
		||||
<summary>For Intel Data Center GPU Max Series</summary>
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
 | 
			
		||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
			
		||||
export ENABLE_SDP_FUSION=1
 | 
			
		||||
```
 | 
			
		||||
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
#### 3.2 Configurations for Windows
 | 
			
		||||
<details>
 | 
			
		||||
 | 
			
		||||
<summary>For Intel iGPU</summary>
 | 
			
		||||
 | 
			
		||||
```cmd
 | 
			
		||||
set SYCL_CACHE_PERSISTENT=1
 | 
			
		||||
set BIGDL_LLM_XMX_DISABLED=1
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
<details>
 | 
			
		||||
 | 
			
		||||
<summary>For Intel Arc™ A300-Series or Pro A60</summary>
 | 
			
		||||
 | 
			
		||||
```cmd
 | 
			
		||||
set SYCL_CACHE_PERSISTENT=1
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
<details>
 | 
			
		||||
 | 
			
		||||
<summary>For other Intel dGPU Series</summary>
 | 
			
		||||
 | 
			
		||||
There is no need to set further environment variables.
 | 
			
		||||
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
> Note: For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
 | 
			
		||||
### 4. Running examples
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
Arguments info:
 | 
			
		||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Qwen1.5 model (e.g. `Qwen/Qwen1.5-7B-Chat`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'Qwen/Qwen1.5-7B-Chat'`.
 | 
			
		||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
 | 
			
		||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
			
		||||
 | 
			
		||||
#### Sample Output
 | 
			
		||||
#### [Qwen/Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat)
 | 
			
		||||
```log
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
-------------------- Prompt --------------------
 | 
			
		||||
<|im_start|>system
 | 
			
		||||
You are a helpful assistant.<|im_end|>
 | 
			
		||||
<|im_start|>user
 | 
			
		||||
AI是什么?<|im_end|>
 | 
			
		||||
<|im_start|>assistant
 | 
			
		||||
-------------------- Output --------------------
 | 
			
		||||
<|im_start|>system
 | 
			
		||||
You are a helpful assistant.<|im_end|>
 | 
			
		||||
<|im_start|>user
 | 
			
		||||
AI是什么?<|im_end|>
 | 
			
		||||
<|im_start|>assistant
 | 
			
		||||
AI(Artificial Intelligence)是指计算机科学的一个分支,其目标是创建能够理解、学习、推理和自我修正的智能机器。AI系统可以通过
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
```log
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
-------------------- Prompt --------------------
 | 
			
		||||
<|im_start|>system
 | 
			
		||||
You are a helpful assistant.<|im_end|>
 | 
			
		||||
<|im_start|>user
 | 
			
		||||
What is AI?<|im_end|>
 | 
			
		||||
<|im_start|>assistant
 | 
			
		||||
-------------------- Output --------------------
 | 
			
		||||
<|im_start|>system
 | 
			
		||||
You are a helpful assistant.<|im_end|>
 | 
			
		||||
<|im_start|>user
 | 
			
		||||
What is AI?<|im_end|>
 | 
			
		||||
<|im_start|>assistant
 | 
			
		||||
AI stands for Artificial Intelligence, which is a field of computer science that focuses on creating intelligent machines that can perform tasks that typically require human intelligence, such as learning
 | 
			
		||||
```
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,90 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import time
 | 
			
		||||
import argparse
 | 
			
		||||
 | 
			
		||||
from transformers import AutoTokenizer
 | 
			
		||||
from bigdl.llm import optimize_model
 | 
			
		||||
import intel_extension_for_pytorch as ipex
 | 
			
		||||
import numpy as np
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    parser = argparse.ArgumentParser(description='Qwen1.5-7B-Chat')
 | 
			
		||||
    parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen1.5-7B-Chat",
 | 
			
		||||
                        help='The huggingface repo id for the Qwen1.5 model to be downloaded'
 | 
			
		||||
                             ', or the path to the huggingface checkpoint folder')
 | 
			
		||||
    parser.add_argument('--prompt', type=str, default="AI是什么?",
 | 
			
		||||
                        help='Prompt to infer') 
 | 
			
		||||
    parser.add_argument('--n-predict', type=int, default=32,
 | 
			
		||||
                        help='Max tokens to predict')
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
    from transformers import AutoModelForCausalLM
 | 
			
		||||
    from bigdl.llm import optimize_model
 | 
			
		||||
    model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
			
		||||
                                                 trust_remote_code=True,
 | 
			
		||||
                                                 torch_dtype = torch.float16,
 | 
			
		||||
                                                 use_cache=True)
 | 
			
		||||
    model = optimize_model(model)
 | 
			
		||||
    model = model.to("xpu")
 | 
			
		||||
 | 
			
		||||
    # Load tokenizer
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
			
		||||
                                              trust_remote_code=True)
 | 
			
		||||
    
 | 
			
		||||
    prompt = args.prompt
 | 
			
		||||
    # Generate predicted tokens
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        messages = [
 | 
			
		||||
            {"role": "system", "content": "You are a helpful assistant."},
 | 
			
		||||
            {"role": "user", "content": prompt}
 | 
			
		||||
            ]
 | 
			
		||||
        text = tokenizer.apply_chat_template(
 | 
			
		||||
            messages,
 | 
			
		||||
            tokenize=False,
 | 
			
		||||
            add_generation_prompt=True
 | 
			
		||||
            )
 | 
			
		||||
        model_inputs = tokenizer([text], return_tensors="pt").to("xpu")
 | 
			
		||||
        # warmup
 | 
			
		||||
        generated_ids = model.generate(
 | 
			
		||||
            model_inputs.input_ids,
 | 
			
		||||
            max_new_tokens=args.n_predict
 | 
			
		||||
            )
 | 
			
		||||
        
 | 
			
		||||
        st = time.time()
 | 
			
		||||
        generated_ids = model.generate(
 | 
			
		||||
            model_inputs.input_ids,
 | 
			
		||||
            max_new_tokens=args.n_predict
 | 
			
		||||
            )
 | 
			
		||||
        torch.xpu.synchronize()
 | 
			
		||||
        end = time.time()
 | 
			
		||||
        generated_ids = generated_ids.cpu()
 | 
			
		||||
        generated_ids = [
 | 
			
		||||
            output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
 | 
			
		||||
            ]
 | 
			
		||||
 | 
			
		||||
        response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
 | 
			
		||||
        print(f'Inference time: {end-st} s')
 | 
			
		||||
        print('-'*20, 'Prompt', '-'*20)
 | 
			
		||||
        print(prompt)
 | 
			
		||||
        print('-'*20, 'Output', '-'*20)
 | 
			
		||||
        print(response)
 | 
			
		||||
		Loading…
	
		Reference in a new issue