diff --git a/README.md b/README.md index 80ccad31..26ff0793 100644 --- a/README.md +++ b/README.md @@ -186,6 +186,7 @@ Over 40 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa | Bark | [link](python/llm/example/CPU/PyTorch-Models/Model/bark) | [link](python/llm/example/GPU/PyTorch-Models/Model/bark) | | SpeechT5 | | [link](python/llm/example/GPU/PyTorch-Models/Model/speech-t5) | | Ziya-Coding-34B-v1.0 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/ziya) | | +| Qwen1.5 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen1.5) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/qwen1.5) | ***For more details, please refer to the `bigdl-llm` [Document](https://test-bigdl-llm.readthedocs.io/en/main/doc/LLM/index.html), [Readme](python/llm), [Tutorial](https://github.com/intel-analytics/bigdl-llm-tutorial) and [API Doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/LLM/index.html).*** diff --git a/python/llm/README.md b/python/llm/README.md index 6e765d39..be0646a5 100644 --- a/python/llm/README.md +++ b/python/llm/README.md @@ -82,6 +82,8 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa | Bark | [link](example/CPU/PyTorch-Models/Model/bark) | [link](example/GPU/PyTorch-Models/Model/bark) | | SpeechT5 | | [link](example/GPU/PyTorch-Models/Model/speech-t5) | | Ziya-Coding-34B-v1.0 | [link](example/CPU/HF-Transformers-AutoModels/Model/ziya) | | +| Qwen1.5 | [link](example/CPU/HF-Transformers-AutoModels/Model/qwen1.5) | [link](example/GPU/HF-Transformers-AutoModels/Model/qwen1.5) | + ### Working with `bigdl-llm` diff --git a/python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen1.5/README.md b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen1.5/README.md new file mode 100644 index 00000000..4f115651 --- /dev/null +++ b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen1.5/README.md @@ -0,0 +1,87 @@ +# Qwen1.5 + +In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Qwen1.5 models. For illustration purposes, we utilize the [Qwen/Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat) as a reference Qwen1.5 model. + +## 0. Requirements +To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. + +## Example: Predict Tokens using `generate()` API +In the example [generate.py](./generate.py), we show a basic use case for a Qwen model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations. +### 1. Install +We suggest using conda to manage environment: +```bash +conda create -n llm python=3.9 +conda activate llm + +pip install --pre --upgrade bigdl-llm[all] # install bigdl-llm with 'all' option +pip install transformers==4.37.0 # install the transformers which support Qwen2 +``` + +### 2. Run +``` +python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT +``` + +Arguments info: +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Qwen model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'Qwen/Qwen1.5-7B-Chat'`. +- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`. +- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. + +> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference. +> +> Please select the appropriate size of the Qwen model based on the capabilities of your machine. + +#### 2.1 Client +On client Windows machine, it is recommended to run directly with full utilization of all cores: +```powershell +python ./generate.py +``` + +#### 2.2 Server +For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket. + +E.g. on Linux, +```bash +# set BigDL-LLM env variables +source bigdl-llm-init + +# e.g. for a server with 48 cores per socket +export OMP_NUM_THREADS=48 +numactl -C 0-47 -m 0 python ./generate.py +``` + +#### 2.3 Sample Output +#### [Qwen/Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat) +```log +Inference time: xxxx s +-------------------- Prompt -------------------- +<|im_start|>system +You are a helpful assistant.<|im_end|> +<|im_start|>user +AI是什么?<|im_end|> +<|im_start|>assistant +-------------------- Output -------------------- +<|im_start|>system +You are a helpful assistant.<|im_end|> +<|im_start|>user +AI是什么?<|im_end|> +<|im_start|>assistant +人工智能(AI)是指计算机科学的一个分支,旨在开发能够执行通常需要人类智能的任务的算法和系统。这些任务包括但不限于理解自然语言、 +``` + +```log +Inference time: xxxx s +-------------------- Prompt -------------------- +<|im_start|>system +You are a helpful assistant.<|im_end|> +<|im_start|>user +What is AI?<|im_end|> +<|im_start|>assistant +-------------------- Output -------------------- +<|im_start|>system +You are a helpful assistant.<|im_end|> +<|im_start|>user +What is AI?<|im_end|> +<|im_start|>assistant +AI, or artificial intelligence, refers to the simulation of human intelligence in machines that are designed to perform tasks that typically require human cognition, such as learning, reasoning +``` \ No newline at end of file diff --git a/python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen1.5/generate.py b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen1.5/generate.py new file mode 100644 index 00000000..becfb0cc --- /dev/null +++ b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen1.5/generate.py @@ -0,0 +1,77 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import torch +import time +import argparse +import numpy as np + +from transformers import AutoTokenizer + + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Qwen1.5-7B-Chat') + parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen1.5-7B-Chat", + help='The huggingface repo id for the Qwen1.5 model to be downloaded' + ', or the path to the huggingface checkpoint folder') + parser.add_argument('--prompt', type=str, default="AI是什么?", + help='Prompt to infer') + parser.add_argument('--n-predict', type=int, default=32, + help='Max tokens to predict') + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + + + from bigdl.llm.transformers import AutoModelForCausalLM + model = AutoModelForCausalLM.from_pretrained(model_path, + load_in_4bit=True, + trust_remote_code=True) + + # Load tokenizer + tokenizer = AutoTokenizer.from_pretrained(model_path, + trust_remote_code=True) + + prompt = args.prompt + + # Generate predicted tokens + with torch.inference_mode(): + messages = [ + {"role": "system", "content": "You are a helpful assistant."}, + {"role": "user", "content": prompt} + ] + text = tokenizer.apply_chat_template( + messages, + tokenize=False, + add_generation_prompt=True + ) + model_inputs = tokenizer([text], return_tensors="pt") + st = time.time() + generated_ids = model.generate( + model_inputs.input_ids, + max_new_tokens=args.n_predict + ) + end = time.time() + generated_ids = [ + output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) + ] + + response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] + print(f'Inference time: {end-st} s') + print('-'*20, 'Prompt', '-'*20) + print(prompt) + print('-'*20, 'Output', '-'*20) + print(response) diff --git a/python/llm/example/CPU/PyTorch-Models/Model/qwen1.5/README.md b/python/llm/example/CPU/PyTorch-Models/Model/qwen1.5/README.md new file mode 100644 index 00000000..2190be8d --- /dev/null +++ b/python/llm/example/CPU/PyTorch-Models/Model/qwen1.5/README.md @@ -0,0 +1,86 @@ +# Qwen1.5 +In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate Qwen1.5 models. For illustration purposes, we utilize the [Qwen/Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat) as reference Qwen1.5 model. + +## Requirements +To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. + +## Example: Predict Tokens using `generate()` API +In the example [generate.py](./generate.py), we show a basic use case for a Qwen1.5 model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations. +### 1. Install +We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#). + +After installing conda, create a Python environment for BigDL-LLM: +```bash +conda create -n llm python=3.9 # recommend to use Python 3.9 +conda activate llm + +pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option +pip install transformers==4.37.0 # install transformers which supports Qwen2 +``` + +### 2. Run +After setting up the Python environment, you could run the example by following steps. + +#### 2.1 Client +On client Windows machines, it is recommended to run directly with full utilization of all cores: +```powershell +python ./generate.py --prompt 'What is AI?' +``` +More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section. + +#### 2.2 Server +For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket. + +E.g. on Linux, +```bash +# set BigDL-LLM env variables +source bigdl-llm-init + +# e.g. for a server with 48 cores per socket +export OMP_NUM_THREADS=48 +numactl -C 0-47 -m 0 python ./generate.py --prompt 'What is AI?' +``` +More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section. + +#### 2.3 Arguments Info +In the example, several arguments can be passed to satisfy your requirements: + +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Qwen1.5 to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'Qwen/Qwen1.5-7B-Chat'`. +- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`. +- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. + +#### 2.3 Sample Output +#### [Qwen/Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat) +```log +Inference time: xxxx s +-------------------- Prompt -------------------- +<|im_start|>system +You are a helpful assistant.<|im_end|> +<|im_start|>user +AI是什么?<|im_end|> +<|im_start|>assistant +-------------------- Output -------------------- +<|im_start|>system +You are a helpful assistant.<|im_end|> +<|im_start|>user +AI是什么?<|im_end|> +<|im_start|>assistant +AI(Artificial Intelligence)是指由计算机程序实现的智能,它使机器能够模拟人类的思考、学习和决策过程,从而解决各种复杂 +``` + +```log +Inference time: xxxx s +-------------------- Prompt -------------------- +<|im_start|>system +You are a helpful assistant.<|im_end|> +<|im_start|>user +What is AI?<|im_end|> +<|im_start|>assistant +-------------------- Output -------------------- +<|im_start|>system +You are a helpful assistant.<|im_end|> +<|im_start|>user +What is AI?<|im_end|> +<|im_start|>assistant +AI, or artificial intelligence, refers to the simulation of human intelligence in machines that are programmed to think, learn, and make decisions like humans. It involves the +``` diff --git a/python/llm/example/CPU/PyTorch-Models/Model/qwen1.5/generate.py b/python/llm/example/CPU/PyTorch-Models/Model/qwen1.5/generate.py new file mode 100644 index 00000000..da769fc3 --- /dev/null +++ b/python/llm/example/CPU/PyTorch-Models/Model/qwen1.5/generate.py @@ -0,0 +1,78 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import torch +import time +import argparse +import numpy as np + +from transformers import AutoTokenizer + + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Qwen1.5-7B-Chat') + parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen1.5-7B-Chat", + help='The huggingface repo id for the Qwen1.5 model to be downloaded' + ', or the path to the huggingface checkpoint folder') + parser.add_argument('--prompt', type=str, default="AI是什么?", + help='Prompt to infer') + parser.add_argument('--n-predict', type=int, default=32, + help='Max tokens to predict') + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + + + from transformers import AutoModelForCausalLM + model = AutoModelForCausalLM.from_pretrained(model_path, + trust_remote_code=True) + + + # Load tokenizer + tokenizer = AutoTokenizer.from_pretrained(model_path, + trust_remote_code=True) + from bigdl.llm import optimize_model + model = optimize_model(model) + + prompt = args.prompt + # Generate predicted tokens + with torch.inference_mode(): + messages = [ + {"role": "system", "content": "You are a helpful assistant."}, + {"role": "user", "content": prompt} + ] + text = tokenizer.apply_chat_template( + messages, + tokenize=False, + add_generation_prompt=True + ) + model_inputs = tokenizer([text], return_tensors="pt") + st = time.time() + generated_ids = model.generate( + model_inputs.input_ids, + max_new_tokens=args.n_predict + ) + end = time.time() + generated_ids = [ + output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) + ] + + response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] + print(f'Inference time: {end-st} s') + print('-'*20, 'Prompt', '-'*20) + print(prompt) + print('-'*20, 'Output', '-'*20) + print(response) diff --git a/python/llm/example/GPU/HF-Transformers-AutoModels/Model/qwen1.5/README.md b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/qwen1.5/README.md new file mode 100644 index 00000000..979c511a --- /dev/null +++ b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/qwen1.5/README.md @@ -0,0 +1,143 @@ +# Qwen1.5 +In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Qwen1.5 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [Qwen/Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat) as a reference InternLM model. + +## 0. Requirements +To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. + +## Example: Predict Tokens using `generate()` API +In the example [generate.py](./generate.py), we show a basic use case for a Qwen1.5 model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs. +### 1. Install +#### 1.1 Installation on Linux +We suggest using conda to manage environment: +```bash +conda create -n llm python=3.9 +conda activate llm +# below command will install intel_extension_for_pytorch==2.1.10+xpu as default +pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu +pip install transformers==4.37.0 # install transformers which supports Qwen2 +``` + +#### 1.2 Installation on Windows +We suggest using conda to manage environment: +```bash +conda create -n llm python=3.9 libuv +conda activate llm +# below command will install intel_extension_for_pytorch==2.1.10+xpu as default +pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu +pip install transformers==4.37.2 # install transformers which supports Qwen2 +``` + +### 2. Configures OneAPI environment variables +#### 2.1 Configurations for Linux +```bash +source /opt/intel/oneapi/setvars.sh +``` + +#### 2.2 Configurations for Windows +```cmd +call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" +``` +> Note: Please make sure you are using **CMD** (**Anaconda Prompt** if using conda) to run the command as PowerShell is not supported. +### 3. Runtime Configurations +For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device. +#### 3.1 Configurations for Linux +
+ +For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series + +```bash +export USE_XETLA=OFF +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +``` + +
+ +
+ +For Intel Data Center GPU Max Series + +```bash +export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +export ENABLE_SDP_FUSION=1 +``` +> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`. +
+ +#### 3.2 Configurations for Windows +
+ +For Intel iGPU + +```cmd +set SYCL_CACHE_PERSISTENT=1 +set BIGDL_LLM_XMX_DISABLED=1 +``` + +
+ +
+ +For Intel Arc™ A300-Series or Pro A60 + +```cmd +set SYCL_CACHE_PERSISTENT=1 +``` + +
+ +
+ +For other Intel dGPU Series + +There is no need to set further environment variables. + +
+ +> Note: For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile. +### 4. Running examples + +``` +python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT +``` + +Arguments info: +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Qwen1.5 model (e.g. `Qwen/Qwen1.5-7B-Chat`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'Qwen/Qwen1.5-7B-Chat'`. +- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`. +- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. + +#### Sample Output +#### [Qwen/Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat) +```log +Inference time: xxxx s +-------------------- Prompt -------------------- +<|im_start|>system +You are a helpful assistant.<|im_end|> +<|im_start|>user +AI是什么?<|im_end|> +<|im_start|>assistant +-------------------- Output -------------------- +<|im_start|>system +You are a helpful assistant.<|im_end|> +<|im_start|>user +AI是什么?<|im_end|> +<|im_start|>assistant +人工智能(AI)是指通过计算机模拟、延伸和扩展人类智能的学科,其目标是使机器具有学习、推理、感知、理解、交流 +``` + +```log +Inference time: xxxx s +-------------------- Prompt -------------------- +<|im_start|>system +You are a helpful assistant.<|im_end|> +<|im_start|>user +What is AI?<|im_end|> +<|im_start|>assistant +-------------------- Output -------------------- +<|im_start|>system +You are a helpful assistant.<|im_end|> +<|im_start|>user +What is AI?<|im_end|> +<|im_start|>assistant +AI, or artificial intelligence, refers to the simulation of human intelligence in machines that are programmed to perform tasks that typically require human cognition, such as learning, reasoning +``` \ No newline at end of file diff --git a/python/llm/example/GPU/HF-Transformers-AutoModels/Model/qwen1.5/generate.py b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/qwen1.5/generate.py new file mode 100644 index 00000000..423f82aa --- /dev/null +++ b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/qwen1.5/generate.py @@ -0,0 +1,90 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import torch +import time +import argparse + +from transformers import AutoTokenizer +from bigdl.llm import optimize_model +import intel_extension_for_pytorch as ipex +import numpy as np + + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Qwen1.5-7B-Chat') + parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen1.5-7B-Chat", + help='The huggingface repo id for the Qwen1.5 model to be downloaded' + ', or the path to the huggingface checkpoint folder') + parser.add_argument('--prompt', type=str, default="AI是什么?", + help='Prompt to infer') + parser.add_argument('--n-predict', type=int, default=32, + help='Max tokens to predict') + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + + + from bigdl.llm.transformers import AutoModelForCausalLM + # Load model in 4 bit, + # which convert the relevant layers in the model into INT4 format + model = AutoModelForCausalLM.from_pretrained(model_path, + load_in_4bit=True, + trust_remote_code=True) + model = model.to("xpu") + + # Load tokenizer + tokenizer = AutoTokenizer.from_pretrained(model_path, + trust_remote_code=True) + + prompt = args.prompt + + # Generate predicted tokens + with torch.inference_mode(): + messages = [ + {"role": "system", "content": "You are a helpful assistant."}, + {"role": "user", "content": prompt} + ] + text = tokenizer.apply_chat_template( + messages, + tokenize=False, + add_generation_prompt=True + ) + model_inputs = tokenizer([text], return_tensors="pt").to("xpu") + # warmup + generated_ids = model.generate( + model_inputs.input_ids, + max_new_tokens=args.n_predict + ) + + st = time.time() + generated_ids = model.generate( + model_inputs.input_ids, + max_new_tokens=args.n_predict + ) + torch.xpu.synchronize() + end = time.time() + generated_ids = generated_ids.cpu() + generated_ids = [ + output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) + ] + + response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] + print(f'Inference time: {end-st} s') + print('-'*20, 'Prompt', '-'*20) + print(prompt) + print('-'*20, 'Output', '-'*20) + print(response) diff --git a/python/llm/example/GPU/PyTorch-Models/Model/qwen1.5/README.md b/python/llm/example/GPU/PyTorch-Models/Model/qwen1.5/README.md new file mode 100644 index 00000000..d5f3bc93 --- /dev/null +++ b/python/llm/example/GPU/PyTorch-Models/Model/qwen1.5/README.md @@ -0,0 +1,143 @@ +# Qwen1.5 +In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate Qwen1.5 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [Qwen/Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat) as a reference InternLM model. + +## 0. Requirements +To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. + +## Example: Predict Tokens using `generate()` API +In the example [generate.py](./generate.py), we show a basic use case for a Qwen1.5 model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs. +### 1. Install +#### 1.1 Installation on Linux +We suggest using conda to manage environment: +```bash +conda create -n llm python=3.9 +conda activate llm +# below command will install intel_extension_for_pytorch==2.1.10+xpu as default +pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu +pip install transformers==4.37.0 # install transformers which supports Qwen2 +``` + +#### 1.2 Installation on Windows +We suggest using conda to manage environment: +```bash +conda create -n llm python=3.9 libuv +conda activate llm +# below command will install intel_extension_for_pytorch==2.1.10+xpu as default +pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu +pip install transformers==4.37.2 # install transformers which supports Qwen2 +``` + +### 2. Configures OneAPI environment variables +#### 2.1 Configurations for Linux +```bash +source /opt/intel/oneapi/setvars.sh +``` + +#### 2.2 Configurations for Windows +```cmd +call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" +``` +> Note: Please make sure you are using **CMD** (**Anaconda Prompt** if using conda) to run the command as PowerShell is not supported. +### 3. Runtime Configurations +For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device. +#### 3.1 Configurations for Linux +
+ +For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series + +```bash +export USE_XETLA=OFF +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +``` + +
+ +
+ +For Intel Data Center GPU Max Series + +```bash +export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +export ENABLE_SDP_FUSION=1 +``` +> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`. +
+ +#### 3.2 Configurations for Windows +
+ +For Intel iGPU + +```cmd +set SYCL_CACHE_PERSISTENT=1 +set BIGDL_LLM_XMX_DISABLED=1 +``` + +
+ +
+ +For Intel Arc™ A300-Series or Pro A60 + +```cmd +set SYCL_CACHE_PERSISTENT=1 +``` + +
+ +
+ +For other Intel dGPU Series + +There is no need to set further environment variables. + +
+ +> Note: For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile. +### 4. Running examples + +``` +python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT +``` + +Arguments info: +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Qwen1.5 model (e.g. `Qwen/Qwen1.5-7B-Chat`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'Qwen/Qwen1.5-7B-Chat'`. +- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`. +- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. + +#### Sample Output +#### [Qwen/Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat) +```log +Inference time: xxxx s +-------------------- Prompt -------------------- +<|im_start|>system +You are a helpful assistant.<|im_end|> +<|im_start|>user +AI是什么?<|im_end|> +<|im_start|>assistant +-------------------- Output -------------------- +<|im_start|>system +You are a helpful assistant.<|im_end|> +<|im_start|>user +AI是什么?<|im_end|> +<|im_start|>assistant +AI(Artificial Intelligence)是指计算机科学的一个分支,其目标是创建能够理解、学习、推理和自我修正的智能机器。AI系统可以通过 +``` + +```log +Inference time: xxxx s +-------------------- Prompt -------------------- +<|im_start|>system +You are a helpful assistant.<|im_end|> +<|im_start|>user +What is AI?<|im_end|> +<|im_start|>assistant +-------------------- Output -------------------- +<|im_start|>system +You are a helpful assistant.<|im_end|> +<|im_start|>user +What is AI?<|im_end|> +<|im_start|>assistant +AI stands for Artificial Intelligence, which is a field of computer science that focuses on creating intelligent machines that can perform tasks that typically require human intelligence, such as learning +``` \ No newline at end of file diff --git a/python/llm/example/GPU/PyTorch-Models/Model/qwen1.5/generate.py b/python/llm/example/GPU/PyTorch-Models/Model/qwen1.5/generate.py new file mode 100644 index 00000000..04b4779d --- /dev/null +++ b/python/llm/example/GPU/PyTorch-Models/Model/qwen1.5/generate.py @@ -0,0 +1,90 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import torch +import time +import argparse + +from transformers import AutoTokenizer +from bigdl.llm import optimize_model +import intel_extension_for_pytorch as ipex +import numpy as np + + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Qwen1.5-7B-Chat') + parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen1.5-7B-Chat", + help='The huggingface repo id for the Qwen1.5 model to be downloaded' + ', or the path to the huggingface checkpoint folder') + parser.add_argument('--prompt', type=str, default="AI是什么?", + help='Prompt to infer') + parser.add_argument('--n-predict', type=int, default=32, + help='Max tokens to predict') + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + + + from transformers import AutoModelForCausalLM + from bigdl.llm import optimize_model + model = AutoModelForCausalLM.from_pretrained(model_path, + trust_remote_code=True, + torch_dtype = torch.float16, + use_cache=True) + model = optimize_model(model) + model = model.to("xpu") + + # Load tokenizer + tokenizer = AutoTokenizer.from_pretrained(model_path, + trust_remote_code=True) + + prompt = args.prompt + # Generate predicted tokens + with torch.inference_mode(): + messages = [ + {"role": "system", "content": "You are a helpful assistant."}, + {"role": "user", "content": prompt} + ] + text = tokenizer.apply_chat_template( + messages, + tokenize=False, + add_generation_prompt=True + ) + model_inputs = tokenizer([text], return_tensors="pt").to("xpu") + # warmup + generated_ids = model.generate( + model_inputs.input_ids, + max_new_tokens=args.n_predict + ) + + st = time.time() + generated_ids = model.generate( + model_inputs.input_ids, + max_new_tokens=args.n_predict + ) + torch.xpu.synchronize() + end = time.time() + generated_ids = generated_ids.cpu() + generated_ids = [ + output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) + ] + + response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] + print(f'Inference time: {end-st} s') + print('-'*20, 'Prompt', '-'*20) + print(prompt) + print('-'*20, 'Output', '-'*20) + print(response)