Delete llm/readme.md (#10569)
This commit is contained in:
parent
08e9aeb31f
commit
c450c85489
2 changed files with 1 additions and 306 deletions
|
|
@ -30,7 +30,7 @@
|
|||
<p>
|
||||
<ul>
|
||||
<li><em>
|
||||
It is built on top of <strong>Intel Extension for PyTorch</strong> (<strong>IPEX</strong>), as well as the excellent work of <strong><code><span>llama.cpp</span></code></strong>, <strong><code><span>bitsandbytes</span></code></strong>, <strong><code><span>vLLM</span></code></strong>, <strong><code><span>qlora</span></code></strong>, <strong><code><span>AutoGPTQ</span></code></strong>, <strong><code><span>AutoAWQ</span></code></strong>, etc.
|
||||
It is built on top of <strong>Intel Extension for PyTorch</strong> (<strong><code><span>IPEX</span></code></strong>), as well as the excellent work of <strong><code><span>llama.cpp</span></code></strong>, <strong><code><span>bitsandbytes</span></code></strong>, <strong><code><span>vLLM</span></code></strong>, <strong><code><span>qlora</span></code></strong>, <strong><code><span>AutoGPTQ</span></code></strong>, <strong><code><span>AutoAWQ</span></code></strong>, etc.
|
||||
</li></em>
|
||||
<li><em>
|
||||
It provides seamless integration with <a href=doc/LLM/Quickstart/llama_cpp_quickstart.html>llama.cpp</a>, <a href=doc/LLM/Quickstart/webui_quickstart.html>Text-Generation-WebUI</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels>HuggingFace tansformers</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/LLM-Finetuning>HuggingFace PEFT</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/LangChain >LangChain</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/LlamaIndex >LlamaIndex</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/Deepspeed-AutoTP >DeepSpeed-AutoTP</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/vLLM-Serving >vLLM</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/src/ipex_llm/serving/fastchat>FastChat</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/LLM-Finetuning/DPO>HuggingFace TRL</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/Applications/autogen >AutoGen</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/ModelScope-Models >ModeScope</a>, etc.
|
||||
|
|
|
|||
|
|
@ -1,305 +0,0 @@
|
|||
## IPEX-LLM
|
||||
**[`ipex-llm`](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/index.html)** is a library for running **LLM** (large language model) on Intel **XPU** (from *Laptop* to *GPU* to *Cloud*) using **INT4** with very low latency[^1] (for any **PyTorch** model).
|
||||
|
||||
> *It is built on top of the excellent work of [llama.cpp](https://github.com/ggerganov/llama.cpp), [gptq](https://github.com/IST-DASLab/gptq), [ggml](https://github.com/ggerganov/ggml), [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), [bitsandbytes](https://github.com/TimDettmers/bitsandbytes), [qlora](https://github.com/artidoro/qlora), [gptq_for_llama](https://github.com/qwopqwop200/GPTQ-for-LLaMa), [chatglm.cpp](https://github.com/li-plus/chatglm.cpp), [redpajama.cpp](https://github.com/togethercomputer/redpajama.cpp), [gptneox.cpp](https://github.com/byroneverson/gptneox.cpp), [bloomz.cpp](https://github.com/NouamaneTazi/bloomz.cpp/), etc.*
|
||||
|
||||
### Demos
|
||||
See the ***optimized performance*** of `chatglm2-6b` and `llama-2-13b-chat` models on 12th Gen Intel Core CPU and Intel Arc GPU below.
|
||||
|
||||
<table width="100%">
|
||||
<tr>
|
||||
<td align="center" colspan="2">12th Gen Intel Core CPU</td>
|
||||
<td align="center" colspan="2">Intel Arc GPU</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>
|
||||
<a href="https://llm-assets.readthedocs.io/en/latest/_images/chatglm2-6b.gif"><img src="https://llm-assets.readthedocs.io/en/latest/_images/chatglm2-6b.gif" ></a>
|
||||
</td>
|
||||
<td>
|
||||
<a href="https://llm-assets.readthedocs.io/en/latest/_images/llama-2-13b-chat.gif"><img src="https://llm-assets.readthedocs.io/en/latest/_images/llama-2-13b-chat.gif"></a>
|
||||
</td>
|
||||
<td>
|
||||
<a href="https://llm-assets.readthedocs.io/en/latest/_images/chatglm2-arc.gif"><img src="https://llm-assets.readthedocs.io/en/latest/_images/chatglm2-arc.gif"></a>
|
||||
</td>
|
||||
<td>
|
||||
<a href="https://llm-assets.readthedocs.io/en/latest/_images/llama2-13b-arc.gif"><img src="https://llm-assets.readthedocs.io/en/latest/_images/llama2-13b-arc.gif"></a>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="center" width="25%"><code>chatglm2-6b</code></td>
|
||||
<td align="center" width="25%"><code>llama-2-13b-chat</code></td>
|
||||
<td align="center" width="25%"><code>chatglm2-6b</code></td>
|
||||
<td align="center" width="25%"><code>llama-2-13b-chat</code></td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
### Verified models
|
||||
Over 20 models have been optimized/verified on `ipex-llm`, including *LLaMA/LLaMA2, ChatGLM/ChatGLM2, Mistral, Falcon, MPT, Dolly, StarCoder, Whisper, Baichuan, InternLM, QWen, Aquila, MOSS,* and more; see the complete list below.
|
||||
|
||||
| Model | CPU Example | GPU Example |
|
||||
|------------|----------------------------------------------------------------|-----------------------------------------------------------------|
|
||||
| LLaMA *(such as Vicuna, Guanaco, Koala, Baize, WizardLM, etc.)* | [link1](example/CPU/Native-Models), [link2](example/CPU/HF-Transformers-AutoModels/Model/vicuna) |[link](example/GPU/HF-Transformers-AutoModels/Model/vicuna)|
|
||||
| LLaMA 2 | [link1](example/CPU/Native-Models), [link2](example/CPU/HF-Transformers-AutoModels/Model/llama2) | [link1](example/GPU/HF-Transformers-AutoModels/Model/llama2), [link2-low GPU memory example](example/GPU/PyTorch-Models/Model/llama2#example-2---low-memory-version-predict-tokens-using-generate-api) |
|
||||
| ChatGLM | [link](example/CPU/HF-Transformers-AutoModels/Model/chatglm) | |
|
||||
| ChatGLM2 | [link](example/CPU/HF-Transformers-AutoModels/Model/chatglm2) | [link](example/GPU/HF-Transformers-AutoModels/Model/chatglm2) |
|
||||
| ChatGLM3 | [link](example/CPU/HF-Transformers-AutoModels/Model/chatglm3) | [link](example/GPU/HF-Transformers-AutoModels/Model/chatglm3) |
|
||||
| Mistral | [link](example/CPU/HF-Transformers-AutoModels/Model/mistral) | [link](example/GPU/HF-Transformers-AutoModels/Model/mistral) |
|
||||
| Falcon | [link](example/CPU/HF-Transformers-AutoModels/Model/falcon) | [link](example/GPU/HF-Transformers-AutoModels/Model/falcon) |
|
||||
| MPT | [link](example/CPU/HF-Transformers-AutoModels/Model/mpt) | [link](example/GPU/HF-Transformers-AutoModels/Model/mpt) |
|
||||
| Dolly-v1 | [link](example/CPU/HF-Transformers-AutoModels/Model/dolly_v1) | [link](example/GPU/HF-Transformers-AutoModels/Model/dolly_v1) |
|
||||
| Dolly-v2 | [link](example/CPU/HF-Transformers-AutoModels/Model/dolly_v2) | [link](example/GPU/HF-Transformers-AutoModels/Model/dolly_v2) |
|
||||
| Replit Code| [link](example/CPU/HF-Transformers-AutoModels/Model/replit) | [link](example/GPU/HF-Transformers-AutoModels/Model/replit) |
|
||||
| RedPajama | [link1](example/CPU/Native-Models), [link2](example/CPU/HF-Transformers-AutoModels/Model/redpajama) | |
|
||||
| Phoenix | [link1](example/CPU/Native-Models), [link2](example/CPU/HF-Transformers-AutoModels/Model/phoenix) | |
|
||||
| StarCoder | [link1](example/CPU/Native-Models), [link2](example/CPU/HF-Transformers-AutoModels/Model/starcoder) | [link](example/GPU/HF-Transformers-AutoModels/Model/starcoder) |
|
||||
| Baichuan | [link](example/CPU/HF-Transformers-AutoModels/Model/baichuan) | [link](example/GPU/HF-Transformers-AutoModels/Model/baichuan) |
|
||||
| Baichuan2 | [link](example/CPU/HF-Transformers-AutoModels/Model/baichuan2) | [link](example/GPU/HF-Transformers-AutoModels/Model/baichuan2) |
|
||||
| InternLM | [link](example/CPU/HF-Transformers-AutoModels/Model/internlm) | [link](example/GPU/HF-Transformers-AutoModels/Model/internlm) |
|
||||
| Qwen | [link](example/CPU/HF-Transformers-AutoModels/Model/qwen) | [link](example/GPU/HF-Transformers-AutoModels/Model/qwen) |
|
||||
| Qwen1.5 | [link](example/CPU/HF-Transformers-AutoModels/Model/qwen1.5) | [link](example/GPU/HF-Transformers-AutoModels/Model/qwen1.5) |
|
||||
| Qwen-VL | [link](example/CPU/HF-Transformers-AutoModels/Model/qwen-vl) | [link](example/GPU/HF-Transformers-AutoModels/Model/qwen-vl) |
|
||||
| Aquila | [link](example/CPU/HF-Transformers-AutoModels/Model/aquila) | [link](example/GPU/HF-Transformers-AutoModels/Model/aquila) |
|
||||
| Aquila2 | [link](example/CPU/HF-Transformers-AutoModels/Model/aquila2) | [link](example/GPU/HF-Transformers-AutoModels/Model/aquila2) |
|
||||
| MOSS | [link](example/CPU/HF-Transformers-AutoModels/Model/moss) | |
|
||||
| Whisper | [link](example/CPU/HF-Transformers-AutoModels/Model/whisper) | [link](example/GPU/HF-Transformers-AutoModels/Model/whisper) |
|
||||
| Phi-1_5 | [link](example/CPU/HF-Transformers-AutoModels/Model/phi-1_5) | [link](example/GPU/HF-Transformers-AutoModels/Model/phi-1_5) |
|
||||
| Flan-t5 | [link](example/CPU/HF-Transformers-AutoModels/Model/flan-t5) | [link](example/GPU/HF-Transformers-AutoModels/Model/flan-t5) |
|
||||
| LLaVA | [link](example/CPU/PyTorch-Models/Model/llava) | [link](example/GPU/PyTorch-Models/Model/llava) |
|
||||
| CodeLlama | [link](example/CPU/HF-Transformers-AutoModels/Model/codellama) | [link](example/GPU/HF-Transformers-AutoModels/Model/codellama) |
|
||||
| Skywork | [link](example/CPU/HF-Transformers-AutoModels/Model/skywork) | |
|
||||
| InternLM-XComposer | [link](example/CPU/HF-Transformers-AutoModels/Model/internlm-xcomposer) | |
|
||||
| WizardCoder-Python | [link](example/CPU/HF-Transformers-AutoModels/Model/wizardcoder-python) | |
|
||||
| CodeShell | [link](example/CPU/HF-Transformers-AutoModels/Model/codeshell) | |
|
||||
| Fuyu | [link](example/CPU/HF-Transformers-AutoModels/Model/fuyu) | |
|
||||
| Distil-Whisper | [link](example/CPU/HF-Transformers-AutoModels/Model/distil-whisper) | [link](example/GPU/HF-Transformers-AutoModels/Model/distil-whisper) |
|
||||
| Yi | [link](example/CPU/HF-Transformers-AutoModels/Model/yi) | [link](example/GPU/HF-Transformers-AutoModels/Model/yi) |
|
||||
| BlueLM | [link](example/CPU/HF-Transformers-AutoModels/Model/bluelm) | [link](example/GPU/HF-Transformers-AutoModels/Model/bluelm) |
|
||||
| Mamba | [link](example/CPU/PyTorch-Models/Model/mamba) | [link](example/GPU/PyTorch-Models/Model/mamba) |
|
||||
| SOLAR | [link](example/CPU/HF-Transformers-AutoModels/Model/solar) | [link](example/GPU/HF-Transformers-AutoModels/Model/solar) |
|
||||
| Phixtral | [link](example/CPU/HF-Transformers-AutoModels/Model/phixtral) | [link](example/GPU/HF-Transformers-AutoModels/Model/phixtral) |
|
||||
| InternLM2 | [link](example/CPU/HF-Transformers-AutoModels/Model/internlm2) | [link](example/GPU/HF-Transformers-AutoModels/Model/internlm2) |
|
||||
| RWKV4 | | [link](example/GPU/HF-Transformers-AutoModels/Model/rwkv4) |
|
||||
| RWKV5 | | [link](example/GPU/HF-Transformers-AutoModels/Model/rwkv5) |
|
||||
| Bark | [link](example/CPU/PyTorch-Models/Model/bark) | [link](example/GPU/PyTorch-Models/Model/bark) |
|
||||
| SpeechT5 | | [link](example/GPU/PyTorch-Models/Model/speech-t5) |
|
||||
| DeepSeek-MoE | [link](example/CPU/HF-Transformers-AutoModels/Model/deepseek-moe) | |
|
||||
| Ziya-Coding-34B-v1.0 | [link](example/CPU/HF-Transformers-AutoModels/Model/ziya) | |
|
||||
| Phi-2 | [link](example/CPU/HF-Transformers-AutoModels/Model/phi-2) | [link](example/GPU/HF-Transformers-AutoModels/Model/phi-2) |
|
||||
| Yuan2 | [link](example/CPU/HF-Transformers-AutoModels/Model/yuan2) | [link](example/GPU/HF-Transformers-AutoModels/Model/yuan2) |
|
||||
| DeciLM-7B | [link](example/CPU/HF-Transformers-AutoModels/Model/deciLM-7b) | [link](example/GPU/HF-Transformers-AutoModels/Model/deciLM-7b) |
|
||||
| Deepseek | [link](example/CPU/HF-Transformers-AutoModels/Model/deepseek) | [link](example/GPU/HF-Transformers-AutoModels/Model/deepseek) |
|
||||
|
||||
### Working with `ipex-llm`
|
||||
|
||||
<details><summary>Table of Contents</summary>
|
||||
|
||||
- [IPEX-LLM](#ipex-llm)
|
||||
- [Demos](#demos)
|
||||
- [Verified models](#verified-models)
|
||||
- [Working with `ipex-llm`](#working-with-ipex-llm)
|
||||
- [Install](#install)
|
||||
- [CPU](#cpu)
|
||||
- [GPU](#gpu)
|
||||
- [Run Model](#run-model)
|
||||
- [1. Hugging Face `transformers` API](#1-hugging-face-transformers-api)
|
||||
- [CPU INT4](#cpu-int4)
|
||||
- [GPU INT4](#gpu-int4)
|
||||
- [More Low-Bit Support](#more-low-bit-support)
|
||||
- [2. Native INT4 model](#2-native-int4-model)
|
||||
- [3. LangChain API](#3-langchain-api)
|
||||
- [4. CLI Tool](#4-cli-tool)
|
||||
- [`ipex-llm` API Doc](#ipex-llm-api-doc)
|
||||
|
||||
</details>
|
||||
|
||||
#### Install
|
||||
##### CPU
|
||||
You may install **`ipex-llm`** on Intel CPU as follows:
|
||||
```bash
|
||||
pip install --pre --upgrade ipex-llm[all]
|
||||
```
|
||||
> Note: `ipex-llm` has been tested on Python 3.9
|
||||
|
||||
##### GPU
|
||||
You may install **`ipex-llm`** on Intel GPU as follows:
|
||||
```bash
|
||||
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
|
||||
# you can install specific ipex/torch version for your need
|
||||
pip install --pre --upgrade ipex-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
|
||||
```
|
||||
> Note: `ipex-llm` has been tested on Python 3.9
|
||||
|
||||
#### Run Model
|
||||
|
||||
You may run the models using **`ipex-llm`** through one of the following APIs:
|
||||
1. [Hugging Face `transformers` API](#1-hugging-face-transformers-api)
|
||||
2. [Native INT4 Model](#2-native-int4-model)
|
||||
3. [LangChain API](#3-langchain-api)
|
||||
4. [CLI (command line interface) Tool](#4-cli-tool)
|
||||
|
||||
##### 1. Hugging Face `transformers` API
|
||||
You may run any Hugging Face *Transformers* model as follows:
|
||||
|
||||
###### CPU INT4
|
||||
You may apply INT4 optimizations to any Hugging Face *Transformers* model on Intel CPU as follows.
|
||||
|
||||
```python
|
||||
#load Hugging Face Transformers model with INT4 optimizations
|
||||
from ipex_llm.transformers import AutoModelForCausalLM
|
||||
model = AutoModelForCausalLM.from_pretrained('/path/to/model/', load_in_4bit=True)
|
||||
|
||||
#run the optimized model on Intel CPU
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
||||
input_ids = tokenizer.encode(input_str, ...)
|
||||
output_ids = model.generate(input_ids, ...)
|
||||
output = tokenizer.batch_decode(output_ids)
|
||||
```
|
||||
|
||||
See the complete examples [here](example/CPU/HF-Transformers-AutoModels/Model/).
|
||||
|
||||
###### GPU INT4
|
||||
You may apply INT4 optimizations to any Hugging Face *Transformers* model on Intel GPU as follows.
|
||||
|
||||
```python
|
||||
#load Hugging Face Transformers model with INT4 optimizations
|
||||
from ipex_llm.transformers import AutoModelForCausalLM
|
||||
import intel_extension_for_pytorch
|
||||
model = AutoModelForCausalLM.from_pretrained('/path/to/model/', load_in_4bit=True)
|
||||
|
||||
#run the optimized model on Intel GPU
|
||||
model = model.to('xpu')
|
||||
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
||||
input_ids = tokenizer.encode(input_str, ...).to('xpu')
|
||||
output_ids = model.generate(input_ids, ...)
|
||||
output = tokenizer.batch_decode(output_ids.cpu())
|
||||
```
|
||||
See the complete examples [here](example/GPU).
|
||||
|
||||
###### More Low-Bit Support
|
||||
- Save and load
|
||||
|
||||
After the model is optimized using `ipex-llm`, you may save and load the model as follows:
|
||||
```python
|
||||
model.save_low_bit(model_path)
|
||||
new_model = AutoModelForCausalLM.load_low_bit(model_path)
|
||||
```
|
||||
*See the complete example [here](example/CPU/HF-Transformers-AutoModels/Save-Load).*
|
||||
|
||||
- Additonal data types
|
||||
|
||||
In addition to INT4, You may apply other low bit optimizations (such as *INT8*, *INT5*, *NF4*, etc.) as follows:
|
||||
|
||||
```python
|
||||
model = AutoModelForCausalLM.from_pretrained('/path/to/model/', load_in_low_bit="sym_int8")
|
||||
```
|
||||
*See the complete example [here](example/CPU/HF-Transformers-AutoModels/More-Data-Types).*
|
||||
|
||||
##### 2. Native INT4 model
|
||||
|
||||
You may also convert Hugging Face *Transformers* models into native INT4 model format for maximum performance as follows.
|
||||
|
||||
>**Notes**: Currently only llama/bloom/gptneox/starcoder/chatglm model families are supported; for other models, you may use the Hugging Face `transformers` model format as described above).
|
||||
|
||||
```python
|
||||
#convert the model
|
||||
from ipex_llm import llm_convert
|
||||
ipex_llm_path = llm_convert(model='/path/to/model/',
|
||||
outfile='/path/to/output/', outtype='int4', model_family="llama")
|
||||
|
||||
#load the converted model
|
||||
#switch to ChatGLMForCausalLM/GptneoxForCausalLM/BloomForCausalLM/StarcoderForCausalLM to load other models
|
||||
from ipex_llm.transformers import LlamaForCausalLM
|
||||
llm = LlamaForCausalLM.from_pretrained("/path/to/output/model.bin", native=True, ...)
|
||||
|
||||
#run the converted model
|
||||
input_ids = llm.tokenize(prompt)
|
||||
output_ids = llm.generate(input_ids, ...)
|
||||
output = llm.batch_decode(output_ids)
|
||||
```
|
||||
|
||||
See the complete example [here](example/CPU/Native-Models/native_int4_pipeline.py).
|
||||
|
||||
##### 3. LangChain API
|
||||
You may run the models using the LangChain API in `ipex-llm`.
|
||||
|
||||
- **Using Hugging Face `transformers` model**
|
||||
|
||||
You may run any Hugging Face *Transformers* model (with INT4 optimiztions applied) using the LangChain API as follows:
|
||||
|
||||
```python
|
||||
from ipex_llm.langchain.llms import TransformersLLM
|
||||
from ipex_llm.langchain.embeddings import TransformersEmbeddings
|
||||
from langchain.chains.question_answering import load_qa_chain
|
||||
|
||||
embeddings = TransformersEmbeddings.from_model_id(model_id=model_path)
|
||||
ipex_llm = TransformersLLM.from_model_id(model_id=model_path, ...)
|
||||
|
||||
doc_chain = load_qa_chain(ipex_llm, ...)
|
||||
output = doc_chain.run(...)
|
||||
```
|
||||
See the examples [here](example/CPU/LangChain/transformers_int4).
|
||||
|
||||
- **Using native INT4 model**
|
||||
|
||||
You may also convert Hugging Face *Transformers* models into *native INT4* format, and then run the converted models using the LangChain API as follows.
|
||||
|
||||
>**Notes**:* Currently only llama/bloom/gptneox/starcoder/chatglm model families are supported; for other models, you may use the Hugging Face `transformers` model format as described above).
|
||||
|
||||
```python
|
||||
from ipex_llm.langchain.llms import LlamaLLM
|
||||
from ipex_llm.langchain.embeddings import LlamaEmbeddings
|
||||
from langchain.chains.question_answering import load_qa_chain
|
||||
|
||||
#switch to ChatGLMEmbeddings/GptneoxEmbeddings/BloomEmbeddings/StarcoderEmbeddings to load other models
|
||||
embeddings = LlamaEmbeddings(model_path='/path/to/converted/model.bin')
|
||||
#switch to ChatGLMLLM/GptneoxLLM/BloomLLM/StarcoderLLM to load other models
|
||||
ipex_llm = LlamaLLM(model_path='/path/to/converted/model.bin')
|
||||
|
||||
doc_chain = load_qa_chain(ipex_llm, ...)
|
||||
doc_chain.run(...)
|
||||
```
|
||||
|
||||
See the examples [here](example/CPU/LangChain/native_int4).
|
||||
|
||||
##### 4. CLI Tool
|
||||
>**Note**: Currently `ipex-llm` CLI supports *LLaMA* (e.g., *vicuna*), *GPT-NeoX* (e.g., *redpajama*), *BLOOM* (e.g., *pheonix*) and *GPT2* (e.g., *starcoder*) model architecture; for other models, you may use the Hugging Face `transformers` or LangChain APIs.
|
||||
|
||||
- ##### Convert model
|
||||
|
||||
You may convert the downloaded model into native INT4 format using `llm-convert`.
|
||||
|
||||
```bash
|
||||
#convert PyTorch (fp16 or fp32) model;
|
||||
#llama/bloom/gptneox/starcoder model family is currently supported
|
||||
llm-convert "/path/to/model/" --model-format pth --model-family "bloom" --outfile "/path/to/output/"
|
||||
|
||||
#convert GPTQ-4bit model
|
||||
#only llama model family is currently supported
|
||||
llm-convert "/path/to/model/" --model-format gptq --model-family "llama" --outfile "/path/to/output/"
|
||||
```
|
||||
|
||||
- ##### Run model
|
||||
|
||||
You may run the converted model using `llm-cli` or `llm-chat` (*built on top of `main.cpp` in [llama.cpp](https://github.com/ggerganov/llama.cpp)*)
|
||||
|
||||
```bash
|
||||
#help
|
||||
#llama/bloom/gptneox/starcoder model family is currently supported
|
||||
llm-cli -x gptneox -h
|
||||
|
||||
#text completion
|
||||
#llama/bloom/gptneox/starcoder model family is currently supported
|
||||
llm-cli -t 16 -x gptneox -m "/path/to/output/model.bin" -p 'Once upon a time,'
|
||||
|
||||
#chat mode
|
||||
#llama/gptneox model family is currently supported
|
||||
llm-chat -m "/path/to/output/model.bin" -x llama
|
||||
```
|
||||
|
||||
### `ipex-llm` API Doc
|
||||
See the inital `ipex-llm` API Doc [here](https://ipex-llm.readthedocs.io/en/latest/doc/PythonAPI/LLM/index.html).
|
||||
|
||||
[^1]: Performance varies by use, configuration and other factors. `ipex-llm` may not optimize to the same degree for non-Intel products. Learn more at www.Intel.com/PerformanceIndex.
|
||||
Loading…
Reference in a new issue