Update index.rst
This commit is contained in:
		
							parent
							
								
									1bae5f40d2
								
							
						
					
					
						commit
						08e9aeb31f
					
				
					 1 changed files with 2 additions and 2 deletions
				
			
		| 
						 | 
				
			
			@ -20,7 +20,7 @@
 | 
			
		|||
.. raw:: html
 | 
			
		||||
 | 
			
		||||
   <p>
 | 
			
		||||
      <strong><code><span>IPEX-LLM</span></code></strong> is a PyTorch library for running <strong>LLM</strong> on Intel CPU and GPU <em>(e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max)</em> with very low latency <sup><a href="#footnote-perf" id="ref-perf">[1]</a></sup>.
 | 
			
		||||
      <strong><code><span><a href="https://github.com/intel-analytics/ipex-llm">IPEX-LLM</a></span></code></strong> is a PyTorch library for running <strong>LLM</strong> on Intel CPU and GPU <em>(e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max)</em> with very low latency <sup><a href="#footnote-perf" id="ref-perf">[1]</a></sup>.
 | 
			
		||||
   </p>
 | 
			
		||||
 | 
			
		||||
.. note::
 | 
			
		||||
| 
						 | 
				
			
			@ -48,7 +48,7 @@ Latest update 🔥
 | 
			
		|||
* [2024/02] ``ipex-llm`` now supports directly loading model from `ModelScope <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/ModelScope-Models>`_ (`魔搭 <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/ModelScope-Models>`_).
 | 
			
		||||
* [2024/02] ``ipex-llm`` added inital **INT2** support (based on llama.cpp `IQ2 <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/GGUF-IQ2>`_ mechanism), which makes it possible to run large-size LLM (e.g., Mixtral-8x7B) on Intel GPU with 16GB VRAM.
 | 
			
		||||
* [2024/02] Users can now use ``ipex-llm`` through `Text-Generation-WebUI <https://github.com/intel-analytics/text-generation-webui>`_ GUI.
 | 
			
		||||
* [2024/02] ``ipex-llm`` now supports `*Self-Speculative Decoding* <doc/LLM/Inference/Self_Speculative_Decoding.html>`_, which in practice brings **~30% speedup** for FP16 and BF16 inference latency on Intel `GPU <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/Speculative-Decoding>`_ and `CPU <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/Speculative-Decoding>`_ respectively.
 | 
			
		||||
* [2024/02] ``ipex-llm`` now supports `Self-Speculative Decoding <doc/LLM/Inference/Self_Speculative_Decoding.html>`_, which in practice brings **~30% speedup** for FP16 and BF16 inference latency on Intel `GPU <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/Speculative-Decoding>`_ and `CPU <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/Speculative-Decoding>`_ respectively.
 | 
			
		||||
* [2024/02] ``ipex-llm`` now supports a comprehensive list of LLM finetuning on Intel GPU (including `LoRA <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/LLM-Finetuning/LoRA>`_, `QLoRA <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/LLM-Finetuning/QLoRA>`_, `DPO <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/LLM-Finetuning/DPO>`_, `QA-LoRA <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/LLM-Finetuning/QA-LoRA>`_ and `ReLoRA <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/LLM-Finetuning/ReLora>`_).
 | 
			
		||||
* [2024/01] Using ``ipex-llm`` `QLoRA <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/LLM-Finetuning/QLoRA>`_, we managed to finetune LLaMA2-7B in **21 minutes** and LLaMA2-70B in **3.14 hours** on 8 Intel Max 1550 GPU for `Standford-Alpaca <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/LLM-Finetuning/QLoRA/alpaca-qlora>`_ (see the blog `here <https://www.intel.com/content/www/us/en/developer/articles/technical/finetuning-llms-on-intel-gpus-using-ipex-llm.html>`_).
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue