LLM: add optimize_model example for bert (#8975)
				
					
				
			This commit is contained in:
		
							parent
							
								
									74338fd291
								
							
						
					
					
						commit
						c1d25a51a8
					
				
					 3 changed files with 104 additions and 0 deletions
				
			
		| 
						 | 
				
			
			@ -7,6 +7,7 @@ You can use `optimize_model` API to accelerate general PyTorch models on Intel s
 | 
			
		|||
| LLaMA 2   | [link](llama2)    |
 | 
			
		||||
| ChatGLM   | [link](chatglm)   | 
 | 
			
		||||
| Openai Whisper | [link](openai-whisper)   | 
 | 
			
		||||
| BERT | [link](bert)   | 
 | 
			
		||||
 | 
			
		||||
## Recommended Requirements
 | 
			
		||||
To run the examples, we recommend using Intel® Xeon® processors (server), or >= 12th Gen Intel® Core™ processor (client).
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										48
									
								
								python/llm/example/pytorch-models/bert/README.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										48
									
								
								python/llm/example/pytorch-models/bert/README.md
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,48 @@
 | 
			
		|||
# BERT
 | 
			
		||||
In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate BERT models. For illustration purposes, we utilize the [bert-large-uncased](https://huggingface.co/bert-large-uncased) as reference BERT models.
 | 
			
		||||
 | 
			
		||||
## Requirements
 | 
			
		||||
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
 | 
			
		||||
 | 
			
		||||
## Example: Extract the feature of given text
 | 
			
		||||
In the example [extract_feature.py](./extract_feature.py), we show a basic use case for a BERT model to extract the feature of given text, with BigDL-LLM INT4 optimizations.
 | 
			
		||||
### 1. Install
 | 
			
		||||
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
 | 
			
		||||
 | 
			
		||||
After installing conda, create a Python environment for BigDL-LLM:
 | 
			
		||||
```bash
 | 
			
		||||
conda create -n llm python=3.9 # recommend to use Python 3.9
 | 
			
		||||
conda activate llm
 | 
			
		||||
 | 
			
		||||
pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 2. Run
 | 
			
		||||
After setting up the Python environment, you could run the example by following steps.
 | 
			
		||||
 | 
			
		||||
#### 2.1 Client
 | 
			
		||||
On client Windows machines, it is recommended to run directly with full utilization of all cores:
 | 
			
		||||
```powershell
 | 
			
		||||
python ./extract_feature.py --text 'This is an example text for feature extraction.'
 | 
			
		||||
```
 | 
			
		||||
More information about arguments can be found in [Arguments Info](#23-arguments-info) section.
 | 
			
		||||
 | 
			
		||||
#### 2.2 Server
 | 
			
		||||
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
 | 
			
		||||
 | 
			
		||||
E.g. on Linux,
 | 
			
		||||
```bash
 | 
			
		||||
# set BigDL-Nano env variables
 | 
			
		||||
source bigdl-nano-init
 | 
			
		||||
 | 
			
		||||
# e.g. for a server with 48 cores per socket
 | 
			
		||||
export OMP_NUM_THREADS=48
 | 
			
		||||
numactl -C 0-47 -m 0 python ./extract_feature.py --text 'This is an example text for feature extraction.'
 | 
			
		||||
```
 | 
			
		||||
More information about arguments can be found in [Arguments Info](#23-arguments-info) section.
 | 
			
		||||
 | 
			
		||||
#### 2.3 Arguments Info
 | 
			
		||||
In the example, several arguments can be passed to satisfy your requirements:
 | 
			
		||||
 | 
			
		||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the BERT model (e.g. `bert-large-uncased`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'bert-large-uncased'`.
 | 
			
		||||
- `--text TEXT`: argument defining the text to be extracted features. It is default to be `'This is an example text for feature extraction.'`.
 | 
			
		||||
							
								
								
									
										55
									
								
								python/llm/example/pytorch-models/bert/extract_feature.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										55
									
								
								python/llm/example/pytorch-models/bert/extract_feature.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,55 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import time
 | 
			
		||||
import argparse
 | 
			
		||||
 | 
			
		||||
from transformers import BertTokenizer, BertModel
 | 
			
		||||
from bigdl.llm import optimize_model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    parser = argparse.ArgumentParser(description='Extract the feature of given text using BERT model')
 | 
			
		||||
    parser.add_argument('--repo-id-or-model-path', type=str, default="bert-large-uncased",
 | 
			
		||||
                        help='The huggingface repo id for the BERT (e.g. `bert-large-uncased`) to be downloaded'
 | 
			
		||||
                             ', or the path to the huggingface checkpoint folder')
 | 
			
		||||
    parser.add_argument('--text', type=str, default="This is an example text for feature extraction.",
 | 
			
		||||
                        help='Text to extract features')
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path
 | 
			
		||||
 | 
			
		||||
    # Load model
 | 
			
		||||
    model = BertModel.from_pretrained(model_path,
 | 
			
		||||
                                      torch_dtype="auto",
 | 
			
		||||
                                      low_cpu_mem_usage=True)
 | 
			
		||||
    
 | 
			
		||||
    # With only one line to enable BigDL-LLM optimization on model
 | 
			
		||||
    model = optimize_model(model)
 | 
			
		||||
 | 
			
		||||
    # Load tokenizer
 | 
			
		||||
    tokenizer = BertTokenizer.from_pretrained(model_path)
 | 
			
		||||
    
 | 
			
		||||
    # Extract the feature of given text
 | 
			
		||||
    text = args.text
 | 
			
		||||
    encoded_input = tokenizer(text, return_tensors='pt')
 | 
			
		||||
    st = time.time()
 | 
			
		||||
    output = model(**encoded_input)
 | 
			
		||||
    end = time.time()
 | 
			
		||||
    print(f'Time cost: {end-st} s')
 | 
			
		||||
    print('-'*20, 'Output', '-'*20)
 | 
			
		||||
    print(output)
 | 
			
		||||
		Loading…
	
		Reference in a new issue