LLM: add auto torch dtype in benchmark. (#8981)

This commit is contained in:
Cengguang Zhang 2023-09-18 15:48:25 +08:00 committed by GitHub
parent cabe7c0358
commit 74338fd291

View file

@ -176,18 +176,18 @@ def run_pytorch_autocast_bf16(repo_id,
st = time.perf_counter()
if repo_id in ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b']:
# TODO: need verify chatglm family run bf16.
model = AutoModel.from_pretrained(model_path, trust_remote_code=True).float()
#model = AutoModel.from_pretrained(model_path, trust_remote_code=True).bfloat()
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, torch_dtype='auto').float()
#model = AutoModel.from_pretrained(model_path, trust_remote_code=True, torch_dtype='auto').bfloat()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
elif repo_id in ['meta-llama/Llama-2-7b-chat-hf','meta-llama/Llama-2-13b-chat-hf',
'meta-llama/Llama-2-70b-chat-hf','decapoda-research/llama-7b-hf',
'decapoda-research/llama-65b-hf','lmsys/vicuna-7b-v1.5',
'lmsys/vicuna-13b-v1.3','project-baize/merged-baize-30b']:
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype='auto')
# Need to use LlamaTokenizer, reason please refer to issue: https://github.com/intel-analytics/BigDL/issues/8944
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
else:
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype='auto')
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
end = time.perf_counter()
print(">> loading of model costs {}s".format(end - st))