revise llamaindex readme (#10283)
This commit is contained in:
parent
232273a1b5
commit
bcfad555df
1 changed files with 51 additions and 37 deletions
|
|
@ -1,60 +1,74 @@
|
||||||
# LlamaIndex Examples
|
# LlamaIndex Examples
|
||||||
|
|
||||||
The examples here show how to use LlamaIndex with `bigdl-llm`.
|
|
||||||
The RAG example is modified from the [demo](https://docs.llamaindex.ai/en/stable/examples/low_level/oss_ingestion_retrieval.html).
|
|
||||||
|
|
||||||
## Install bigdl-llm
|
This folder contains examples showcasing how to use [**LlamaIndex**](https://github.com/run-llama/llama_index) with `bigdl-llm`.
|
||||||
Follow the instructions in [Install](https://github.com/intel-analytics/BigDL/tree/main/python/llm#install).
|
> [**LlamaIndex**](https://github.com/run-llama/llama_index) is a data framework designed to improve large language models by providing tools for easier data ingestion, management, and application integration.
|
||||||
|
|
||||||
## Install Required Dependencies for llamaindex examples.
|
## Prerequisites
|
||||||
|
|
||||||
### Install Site-packages
|
Ensure `bigdl-llm` is installed by following the [BigDL-LLM Installation Guide](https://github.com/intel-analytics/BigDL/tree/main/python/llm#install) before proceeding with the examples provided here.
|
||||||
|
|
||||||
|
|
||||||
|
## Retrieval-Augmented Generation (RAG) Example
|
||||||
|
The RAG example ([rag.py](./rag.py)) is adapted from the [Official llama index RAG example](https://docs.llamaindex.ai/en/stable/examples/low_level/oss_ingestion_retrieval.html). This example builds a pipeline to ingest data (e.g. llama2 paper in pdf format) into a vector database (e.g. PostgreSQL), and then build a retrieval pipeline from that vector database.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
### Setting up Dependencies
|
||||||
|
|
||||||
|
* **Install LlamaIndex Packages**
|
||||||
```bash
|
```bash
|
||||||
pip install llama-index-readers-file
|
pip install llama-index-readers-file llama-index-vector-stores-postgres llama-index-embeddings-huggingface
|
||||||
pip install llama-index-vector-stores-postgres
|
|
||||||
pip install llama-index-embeddings-huggingface
|
|
||||||
```
|
```
|
||||||
|
|
||||||
### Install Postgres
|
* **Database Setup (using PostgreSQL)**:
|
||||||
> Note: There are plenty of open-source databases you can use. Here we provide an example using Postgres.
|
* Installation:
|
||||||
* Download and install postgres by running the commands below.
|
|
||||||
```bash
|
```bash
|
||||||
sudo apt-get install postgresql-client
|
sudo apt-get install postgresql-client
|
||||||
sudo apt-get install postgresql
|
sudo apt-get install postgresql
|
||||||
```
|
```
|
||||||
* Initilize postgres.
|
* Initialization:
|
||||||
|
|
||||||
|
Switch to the **postgres** user and launch **psql** console:
|
||||||
```bash
|
```bash
|
||||||
sudo su - postgres
|
sudo su - postgres
|
||||||
psql
|
psql
|
||||||
```
|
```
|
||||||
After running the commands in the shell, we reach the console of postgres. Then we can add a role like the following
|
Then, create a new user role:
|
||||||
```bash
|
```bash
|
||||||
CREATE ROLE <user> WITH LOGIN PASSWORD '<password>';
|
CREATE ROLE <user> WITH LOGIN PASSWORD '<password>';
|
||||||
ALTER ROLE <user> SUPERUSER;
|
ALTER ROLE <user> SUPERUSER;
|
||||||
```
|
```
|
||||||
* Install pgvector according to the [page](https://github.com/pgvector/pgvector). If you encounter problem about the installation, please refer to the [notes](https://github.com/pgvector/pgvector#installation-notes) which may be helpful.
|
* **Pgvector Installation**:
|
||||||
* Download the database.
|
Follow installation instructions on [pgvector's GitHub](https://github.com/pgvector/pgvector) and refer to the [installation notes](https://github.com/pgvector/pgvector#installation-notes) for additional help.
|
||||||
|
|
||||||
|
|
||||||
|
* **Data Preparation**: Download the Llama2 paper and save it as `data/llama2.pdf`, which serves as the default source file for retrieval.
|
||||||
```bash
|
```bash
|
||||||
mkdir data
|
mkdir data
|
||||||
wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"
|
wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
## Run the examples
|
### Running the RAG example
|
||||||
|
|
||||||
|
In the current directory, run the example with command:
|
||||||
|
|
||||||
### Retrieval-augmented Generation
|
|
||||||
```bash
|
```bash
|
||||||
python rag.py -m MODEL_PATH -e EMBEDDING_MODEL_PATH -u USERNAME -p PASSWORD -q QUESTION -d DATA
|
python rag.py -m <path_to_model>
|
||||||
```
|
```
|
||||||
arguments info:
|
**Additional Parameters for Configuration**:
|
||||||
- `-m MODEL_PATH`: **required**, path to the llama model
|
- `-m MODEL_PATH`: **Required**, path to the LLM model
|
||||||
- `-e EMBEDDING_MODEL_PATH`: path to the embedding model
|
- `-e EMBEDDING_MODEL_PATH`: path to the embedding model
|
||||||
- `-u USERNAME`: username in the postgres database
|
- `-u USERNAME`: username in the PostgreSQL database
|
||||||
- `-p PASSWORD`: password in the postgres database
|
- `-p PASSWORD`: password in the PostgreSQL database
|
||||||
- `-q QUESTION`: question you want to ask
|
- `-q QUESTION`: question you want to ask
|
||||||
- `-d DATA`: path to data used during retrieval
|
- `-d DATA`: path to source data used for retrieval (in pdf format)
|
||||||
|
|
||||||
|
### Example Output
|
||||||
|
|
||||||
|
A query such as **"How does Llama 2 compare to other open-source models?"** with the Llama2 paper as the data source, using the `Llama-2-7b-chat-hf` model, will produce the output like below:
|
||||||
|
|
||||||
Here is the sample output when applying Llama-2-7b-chat-hf as the generatio model when we ask "How does Llama 2 perform compared to other open-source models?" and use llama.pdf as database.
|
|
||||||
```
|
```
|
||||||
Llama 2 performs better than most open-source models on the benchmarks we tested. Specifically, it outperforms all open-source models on MMLU and BBH, and is close to GPT-3.5 on these benchmarks. Additionally, Llama 2 is on par or better than PaLM-2-L on almost all benchmarks. The only exception is the coding benchmarks, where Llama 2 lags significantly behind GPT-4 and PaLM-2-L. Overall, Llama 2 demonstrates strong performance on a wide range of natural language processing tasks.
|
Llama 2 performs better than most open-source models on the benchmarks we tested. Specifically, it outperforms all open-source models on MMLU and BBH, and is close to GPT-3.5 on these benchmarks. Additionally, Llama 2 is on par or better than PaLM-2-L on almost all benchmarks. The only exception is the coding benchmarks, where Llama 2 lags significantly behind GPT-4 and PaLM-2-L. Overall, Llama 2 demonstrates strong performance on a wide range of natural language processing tasks.
|
||||||
```
|
```
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue