Enable Gemma fused mlp + Gelu (#10276)
* update llama mlp forward * add all * fix style check * split * update * update * update * fix style
This commit is contained in:
		
							parent
							
								
									2d930bdca8
								
							
						
					
					
						commit
						232273a1b5
					
				
					 8 changed files with 45 additions and 9 deletions
				
			
		| 
						 | 
				
			
			@ -1108,6 +1108,7 @@ def _optimize_post(model, lightweight_bmm=False):
 | 
			
		|||
        module = importlib.import_module(modeling_module_name)
 | 
			
		||||
        from bigdl.llm.transformers.models.gemma import gemma_attention_forward
 | 
			
		||||
        from bigdl.llm.transformers.models.gemma import gemma_rms_norm_forward
 | 
			
		||||
        from bigdl.llm.transformers.models.gemma import gemma_mlp_forward
 | 
			
		||||
        convert_forward(model,
 | 
			
		||||
                        module.GemmaAttention,
 | 
			
		||||
                        gemma_attention_forward,
 | 
			
		||||
| 
						 | 
				
			
			@ -1115,6 +1116,9 @@ def _optimize_post(model, lightweight_bmm=False):
 | 
			
		|||
        convert_forward(model,
 | 
			
		||||
                        module.GemmaRMSNorm,
 | 
			
		||||
                        gemma_rms_norm_forward)
 | 
			
		||||
        convert_forward(model,
 | 
			
		||||
                        module.GemmaMLP,
 | 
			
		||||
                        gemma_mlp_forward)
 | 
			
		||||
    elif model.config.model_type == "Yi":
 | 
			
		||||
        modeling_module_name = model.__class__.__module__
 | 
			
		||||
        module = importlib.import_module(modeling_module_name)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -28,7 +28,7 @@ from bigdl.llm.transformers.models.utils import init_fp8_kv_cache, append_fp8_kv
 | 
			
		|||
    restore_fp8_kv_cache, use_quantize_kv_cache
 | 
			
		||||
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, \
 | 
			
		||||
    append_kv_cache, is_enough_kv_cache_room_4_31
 | 
			
		||||
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb
 | 
			
		||||
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb, SILU
 | 
			
		||||
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb_no_cache_xpu
 | 
			
		||||
from bigdl.llm.transformers.models.utils import mlp_fusion_check
 | 
			
		||||
from transformers.utils import logging
 | 
			
		||||
| 
						 | 
				
			
			@ -80,7 +80,7 @@ def baichuan_mlp_forward(
 | 
			
		|||
        return self.down_proj(linear_q4_0.mlp_forward_xpu(
 | 
			
		||||
            x_2d, self.gate_proj.weight.data, self.up_proj.weight.data,
 | 
			
		||||
            x_2d.shape[0], x_2d.shape[1], self.gate_proj.out_len,
 | 
			
		||||
            qtype
 | 
			
		||||
            SILU, qtype
 | 
			
		||||
        ))
 | 
			
		||||
    return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -38,6 +38,7 @@ from torch import nn
 | 
			
		|||
from bigdl.llm.utils.common import invalidInputError
 | 
			
		||||
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
 | 
			
		||||
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb_cache_freq_xpu
 | 
			
		||||
from bigdl.llm.transformers.models.utils import mlp_fusion_check, GELU
 | 
			
		||||
from bigdl.llm.transformers.models.utils import is_enough_kv_cache_room_4_36, rotate_half
 | 
			
		||||
from bigdl.llm.transformers.low_bit_linear import SYM_INT4, FP8E5
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -98,6 +99,31 @@ def gemma_rms_norm_forward(self, hidden_states):
 | 
			
		|||
    return (1 + self.weight) * hidden_states.to(input_dtype)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def gemma_mlp_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    x: torch.Tensor,
 | 
			
		||||
    residual=None
 | 
			
		||||
) -> torch.Tensor:
 | 
			
		||||
    x_2d = x.view(-1, x.shape[-1])
 | 
			
		||||
    bsz, hidden_size = x_2d.shape
 | 
			
		||||
    qtype = getattr(self.gate_proj, "qtype", None)
 | 
			
		||||
    if mlp_fusion_check(x_2d, qtype, self.training) and not self.down_proj.enable_xetla:
 | 
			
		||||
        import linear_q4_0
 | 
			
		||||
        if not x_2d.is_contiguous():
 | 
			
		||||
            x_2d = x_2d.contiguous()
 | 
			
		||||
        out = self.down_proj(linear_q4_0.mlp_forward_xpu(
 | 
			
		||||
            x_2d, self.gate_proj.weight.data, self.up_proj.weight.data,
 | 
			
		||||
            x_2d.shape[0], x_2d.shape[1], self.gate_proj.out_len,
 | 
			
		||||
            GELU, qtype
 | 
			
		||||
        ))
 | 
			
		||||
    else:
 | 
			
		||||
        out = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
 | 
			
		||||
    if residual is not None:
 | 
			
		||||
        return out + residual
 | 
			
		||||
    else:
 | 
			
		||||
        return out
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def gemma_attention_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    hidden_states: torch.Tensor,
 | 
			
		||||
| 
						 | 
				
			
			@ -136,6 +162,7 @@ def gemma_attention_forward(
 | 
			
		|||
                                                                         position_ids,
 | 
			
		||||
                                                                         cache_k, cache_v,
 | 
			
		||||
                                                                         self.q_proj.weight.qtype,
 | 
			
		||||
                                                                         self.v_proj.weight.qtype,
 | 
			
		||||
                                                                         kv_seq_len,
 | 
			
		||||
                                                                         self.head_dim)
 | 
			
		||||
        kv_seq_len += 1
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -40,6 +40,7 @@ import math
 | 
			
		|||
import os
 | 
			
		||||
import torch.nn.functional as F
 | 
			
		||||
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
 | 
			
		||||
from bigdl.llm.transformers.models.utils import SILU
 | 
			
		||||
from bigdl.llm.transformers.models.utils import init_fp8_kv_cache, append_fp8_kv_cache, \
 | 
			
		||||
    restore_fp8_kv_cache, use_quantize_kv_cache
 | 
			
		||||
from bigdl.llm.transformers.models.utils import is_enough_kv_cache_room_4_31, \
 | 
			
		||||
| 
						 | 
				
			
			@ -118,7 +119,7 @@ def llama_mlp_forward(
 | 
			
		|||
        out = self.down_proj(linear_q4_0.mlp_forward_xpu(
 | 
			
		||||
            x_2d, self.gate_proj.weight.data, self.up_proj.weight.data,
 | 
			
		||||
            x_2d.shape[0], x_2d.shape[1], self.gate_proj.out_len,
 | 
			
		||||
            qtype
 | 
			
		||||
            SILU, qtype
 | 
			
		||||
        ))
 | 
			
		||||
        if residual is not None:
 | 
			
		||||
            return out + residual
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -50,7 +50,7 @@ from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb,\
 | 
			
		|||
    apply_rotary_pos_emb_cache_freq_xpu, is_enough_kv_cache_room_4_36
 | 
			
		||||
from bigdl.llm.transformers.models.mistral import should_use_fuse_rope, use_decoding_fast_path
 | 
			
		||||
from bigdl.llm.transformers.models.utils import use_flash_attention, use_esimd_sdp
 | 
			
		||||
from bigdl.llm.transformers.models.utils import mlp_fusion_check
 | 
			
		||||
from bigdl.llm.transformers.models.utils import mlp_fusion_check, SILU
 | 
			
		||||
from bigdl.llm.transformers.low_bit_linear import IQ2_XXS
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -371,7 +371,7 @@ def mixtral_mlp_forward(
 | 
			
		|||
        return self.w2(linear_q4_0.mlp_forward_xpu(
 | 
			
		||||
            x, self.w1.weight.data, self.w3.weight.data,
 | 
			
		||||
            x.shape[0], x.shape[1], self.w1.out_len,
 | 
			
		||||
            qtype,
 | 
			
		||||
            SILU, qtype,
 | 
			
		||||
        )) * routing_weights
 | 
			
		||||
    else:
 | 
			
		||||
        current_hidden_states = self.act_fn(self.w1(x)) * self.w3(x)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -39,7 +39,7 @@ except ImportError:
 | 
			
		|||
from bigdl.llm.transformers.models.utils import extend_kv_cache, init_kv_cache, append_kv_cache
 | 
			
		||||
from bigdl.llm.transformers.models.utils import init_fp8_kv_cache, append_fp8_kv_cache, \
 | 
			
		||||
    restore_fp8_kv_cache, use_quantize_kv_cache
 | 
			
		||||
from bigdl.llm.transformers.models.utils import rotate_half
 | 
			
		||||
from bigdl.llm.transformers.models.utils import rotate_half, SILU
 | 
			
		||||
from bigdl.llm.transformers.models.utils import mlp_fusion_check
 | 
			
		||||
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb_cache_freq_xpu
 | 
			
		||||
from bigdl.llm.utils.common import invalidInputError, invalidOperationError
 | 
			
		||||
| 
						 | 
				
			
			@ -292,6 +292,6 @@ def qwen_mlp_forward(self, x: torch.Tensor) -> torch.Tensor:
 | 
			
		|||
        return self.c_proj(linear_q4_0.mlp_forward_xpu(
 | 
			
		||||
            x_2d, self.w2.weight.data, self.w1.weight.data,
 | 
			
		||||
            x_2d.shape[0], x_2d.shape[1], self.w2.out_len,
 | 
			
		||||
            qtype
 | 
			
		||||
            SILU, qtype
 | 
			
		||||
        ))
 | 
			
		||||
    return self.c_proj(F.silu(self.w2(x)) * self.w1(x))
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -26,6 +26,10 @@ SYM_INT8 = ggml_tensor_qtype["sym_int8"]
 | 
			
		|||
FP8E4 = ggml_tensor_qtype["fp8_e4m3"]
 | 
			
		||||
FP8E5 = ggml_tensor_qtype["fp8_e5m2"]
 | 
			
		||||
 | 
			
		||||
# used in fused mlp forward
 | 
			
		||||
SILU = 0
 | 
			
		||||
GELU = 1
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def init_kv_cache(batch_size, num_heads, head_dim, current_length, max_length, dtype, device):
 | 
			
		||||
    key_cache_storage = torch.empty(batch_size, num_heads,
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -34,7 +34,7 @@ from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb, \
 | 
			
		|||
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
 | 
			
		||||
from bigdl.llm.transformers.models.utils import init_fp8_kv_cache, append_fp8_kv_cache, \
 | 
			
		||||
    restore_fp8_kv_cache, use_quantize_kv_cache
 | 
			
		||||
from bigdl.llm.transformers.models.utils import is_enough_kv_cache_room_4_31
 | 
			
		||||
from bigdl.llm.transformers.models.utils import is_enough_kv_cache_room_4_31. SILU
 | 
			
		||||
from bigdl.llm.transformers.low_bit_linear import SYM_INT4, FP8E5
 | 
			
		||||
 | 
			
		||||
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
 | 
			
		||||
| 
						 | 
				
			
			@ -107,7 +107,7 @@ def yuan_mlp_forward(
 | 
			
		|||
        out = self.down_proj(linear_q4_0.mlp_forward_xpu(
 | 
			
		||||
            x_2d, self.up_proj.weight.data, self.gate_proj.weight.data,
 | 
			
		||||
            x_2d.shape[0], x_2d.shape[1], self.up_proj.out_len,
 | 
			
		||||
            qtype
 | 
			
		||||
            SILU, qtype
 | 
			
		||||
        ))
 | 
			
		||||
        if residual is not None:
 | 
			
		||||
            return out + residual
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue