[LLM] Support transformers-v4.36.0 on mistral model (#9744)
* add support transformers-v4.36.0 on mistral model * python/llm/src/bigdl/llm/transformers/models/mistral.py * make the redundant implementation as utils * fix code style * fix * fix style * update with utils enough_kv_room
This commit is contained in:
		
							parent
							
								
									e36111e713
								
							
						
					
					
						commit
						ba0b939579
					
				
					 2 changed files with 205 additions and 48 deletions
				
			
		| 
						 | 
					@ -652,19 +652,34 @@ def _optimize_post(model, lightweight_bmm=False):
 | 
				
			||||||
                            module.MistralRMSNorm,
 | 
					                            module.MistralRMSNorm,
 | 
				
			||||||
                            llama_rms_norm_forward)
 | 
					                            llama_rms_norm_forward)
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            modeling_module_name = model.__class__.__module__
 | 
					            if version.parse(trans_version) >= version.parse("4.36.0"):
 | 
				
			||||||
            module = importlib.import_module(modeling_module_name)
 | 
					                modeling_module_name = model.__class__.__module__
 | 
				
			||||||
            from bigdl.llm.transformers.models.mistral import mistral_attention_forward
 | 
					                module = importlib.import_module(modeling_module_name)
 | 
				
			||||||
            convert_forward(model,
 | 
					                from bigdl.llm.transformers.models.mistral import mistral_attention_forward_4_36
 | 
				
			||||||
                            module.MistralAttention,
 | 
					                convert_forward(model,
 | 
				
			||||||
                            mistral_attention_forward
 | 
					                                module.MistralAttention,
 | 
				
			||||||
                            )
 | 
					                                mistral_attention_forward_4_36
 | 
				
			||||||
            convert_forward(model,
 | 
					                                )
 | 
				
			||||||
                            module.MistralRMSNorm,
 | 
					                convert_forward(model,
 | 
				
			||||||
                            llama_rms_norm_forward)
 | 
					                                module.MistralRMSNorm,
 | 
				
			||||||
            convert_forward(model,
 | 
					                                llama_rms_norm_forward)
 | 
				
			||||||
                            module.MistralMLP,
 | 
					                convert_forward(model,
 | 
				
			||||||
                            llama_mlp_forward)
 | 
					                                module.MistralMLP,
 | 
				
			||||||
 | 
					                                llama_mlp_forward)
 | 
				
			||||||
 | 
					            else:
 | 
				
			||||||
 | 
					                modeling_module_name = model.__class__.__module__
 | 
				
			||||||
 | 
					                module = importlib.import_module(modeling_module_name)
 | 
				
			||||||
 | 
					                from bigdl.llm.transformers.models.mistral import mistral_attention_forward
 | 
				
			||||||
 | 
					                convert_forward(model,
 | 
				
			||||||
 | 
					                                module.MistralAttention,
 | 
				
			||||||
 | 
					                                mistral_attention_forward
 | 
				
			||||||
 | 
					                                )
 | 
				
			||||||
 | 
					                convert_forward(model,
 | 
				
			||||||
 | 
					                                module.MistralRMSNorm,
 | 
				
			||||||
 | 
					                                llama_rms_norm_forward)
 | 
				
			||||||
 | 
					                convert_forward(model,
 | 
				
			||||||
 | 
					                                module.MistralMLP,
 | 
				
			||||||
 | 
					                                llama_mlp_forward)
 | 
				
			||||||
    elif model.config.model_type == "Yi":
 | 
					    elif model.config.model_type == "Yi":
 | 
				
			||||||
        modeling_module_name = model.__class__.__module__
 | 
					        modeling_module_name = model.__class__.__module__
 | 
				
			||||||
        module = importlib.import_module(modeling_module_name)
 | 
					        module = importlib.import_module(modeling_module_name)
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -44,7 +44,8 @@ from bigdl.llm.utils.common import invalidInputError
 | 
				
			||||||
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
 | 
					from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
 | 
				
			||||||
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb,\
 | 
					from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb,\
 | 
				
			||||||
    apply_rotary_pos_emb_no_cache_xpu
 | 
					    apply_rotary_pos_emb_no_cache_xpu
 | 
				
			||||||
from bigdl.llm.transformers.models.utils import is_enough_kv_cache_room_4_31
 | 
					from bigdl.llm.transformers.models.utils import is_enough_kv_cache_room_4_31,\
 | 
				
			||||||
 | 
					    is_enough_kv_cache_room_4_36
 | 
				
			||||||
from bigdl.llm.transformers.low_bit_linear import SYM_INT4
 | 
					from bigdl.llm.transformers.low_bit_linear import SYM_INT4
 | 
				
			||||||
 | 
					
 | 
				
			||||||
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
 | 
					KV_CACHE_ALLOC_BLOCK_LENGTH = 256
 | 
				
			||||||
| 
						 | 
					@ -75,6 +76,46 @@ def use_decoding_fast_path(q_type, use_fuse_rope, enough_kv_room, bs):
 | 
				
			||||||
    return q_type == SYM_INT4 and use_fuse_rope and enough_kv_room and bs == 1
 | 
					    return q_type == SYM_INT4 and use_fuse_rope and enough_kv_room and bs == 1
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def compute_attn_outputs_weights(query_states, key_states, value_states, bsz, q_len, kv_seq_len,
 | 
				
			||||||
 | 
					                                 num_heads, head_dim, hidden_size, attention_mask):
 | 
				
			||||||
 | 
					    attn_weights = torch.matmul(
 | 
				
			||||||
 | 
					        query_states,
 | 
				
			||||||
 | 
					        key_states.transpose(2, 3)) / math.sqrt(head_dim)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if attn_weights.size() != (bsz, num_heads, q_len, kv_seq_len):
 | 
				
			||||||
 | 
					        invalidInputError(
 | 
				
			||||||
 | 
					            False,
 | 
				
			||||||
 | 
					            f"Attention weights should be of size {(bsz, num_heads, q_len, kv_seq_len)},"
 | 
				
			||||||
 | 
					            f" but is {attn_weights.size()}"
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if attention_mask is not None:
 | 
				
			||||||
 | 
					        if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
 | 
				
			||||||
 | 
					            invalidInputError(
 | 
				
			||||||
 | 
					                False,
 | 
				
			||||||
 | 
					                f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)},"
 | 
				
			||||||
 | 
					                f" but is {attention_mask.size()}"
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        attn_weights = attn_weights + attention_mask
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # upcast attention to fp32
 | 
				
			||||||
 | 
					    attn_weights = nn.functional.\
 | 
				
			||||||
 | 
					        softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
 | 
				
			||||||
 | 
					    attn_output = torch.matmul(attn_weights, value_states)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if attn_output.size() != (bsz, num_heads, q_len, head_dim):
 | 
				
			||||||
 | 
					        invalidInputError(
 | 
				
			||||||
 | 
					            f"`attn_output` should be of size {(bsz, num_heads, q_len, head_dim)},"
 | 
				
			||||||
 | 
					            f" but is {attn_output.size()}"
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
				
			||||||
 | 
					    attn_output = attn_output.reshape(bsz, q_len, hidden_size)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return attn_output, attn_weights
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def mistral_attention_forward(
 | 
					def mistral_attention_forward(
 | 
				
			||||||
    self,
 | 
					    self,
 | 
				
			||||||
    hidden_states: torch.Tensor,
 | 
					    hidden_states: torch.Tensor,
 | 
				
			||||||
| 
						 | 
					@ -177,40 +218,141 @@ def mistral_attention_forward(
 | 
				
			||||||
    key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
					    key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
				
			||||||
    value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
					    value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    attn_weights = torch.matmul(
 | 
					    attn_output, attn_weights = compute_attn_outputs_weights(query_states, key_states, value_states,
 | 
				
			||||||
        query_states,
 | 
					                                                             bsz, q_len, kv_seq_len,
 | 
				
			||||||
        key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
					                                                             self.num_heads, self.head_dim,
 | 
				
			||||||
 | 
					                                                             self.hidden_size, attention_mask)
 | 
				
			||||||
    if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
 | 
					
 | 
				
			||||||
        invalidInputError(
 | 
					    attn_output = self.o_proj(attn_output)
 | 
				
			||||||
            False,
 | 
					
 | 
				
			||||||
            f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)},"
 | 
					    if not output_attentions:
 | 
				
			||||||
            f" but is {attn_weights.size()}"
 | 
					        attn_weights = None
 | 
				
			||||||
        )
 | 
					
 | 
				
			||||||
 | 
					    return attn_output, attn_weights, past_key_value
 | 
				
			||||||
    if attention_mask is not None:
 | 
					
 | 
				
			||||||
        if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
 | 
					
 | 
				
			||||||
            invalidInputError(
 | 
					def mistral_attention_forward_4_36(
 | 
				
			||||||
                False,
 | 
					    self,
 | 
				
			||||||
                f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)},"
 | 
					    hidden_states: torch.Tensor,
 | 
				
			||||||
                f" but is {attention_mask.size()}"
 | 
					    attention_mask: Optional[torch.Tensor]=None,
 | 
				
			||||||
            )
 | 
					    position_ids: Optional[torch.LongTensor]=None,
 | 
				
			||||||
 | 
					    past_key_value: Optional[Tuple[torch.Tensor]]=None,
 | 
				
			||||||
        attn_weights = attn_weights + attention_mask
 | 
					    output_attentions: bool=False,
 | 
				
			||||||
 | 
					    use_cache: bool=False,
 | 
				
			||||||
    # upcast attention to fp32
 | 
					    padding_mask: Optional[torch.Tensor]=None,
 | 
				
			||||||
    attn_weights = nn.functional.\
 | 
					) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
				
			||||||
        softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
 | 
					    bsz, q_len, _ = hidden_states.size()
 | 
				
			||||||
    attn_output = torch.matmul(attn_weights, value_states)
 | 
					    device = hidden_states.device
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
 | 
					    use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
 | 
				
			||||||
        invalidInputError(
 | 
					    enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx)
 | 
				
			||||||
            f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)},"
 | 
					    decoding_fast_path = use_decoding_fast_path(self.q_proj.qtype,
 | 
				
			||||||
            f" but is {attn_output.size()}"
 | 
					                                                use_fuse_rope,
 | 
				
			||||||
        )
 | 
					                                                enough_kv_room,
 | 
				
			||||||
 | 
					                                                bsz * q_len)
 | 
				
			||||||
    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
					
 | 
				
			||||||
    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
					    if decoding_fast_path:
 | 
				
			||||||
 | 
					        hidden_states = hidden_states.view(1, -1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        cache_k = past_key_value.key_cache[self.layer_idx]
 | 
				
			||||||
 | 
					        cache_v = past_key_value.value_cache[self.layer_idx]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        kv_seq_len = cache_k.shape[-2]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        import linear_q4_0
 | 
				
			||||||
 | 
					        query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
 | 
				
			||||||
 | 
					                                                                         self.q_proj.weight,
 | 
				
			||||||
 | 
					                                                                         self.k_proj.weight,
 | 
				
			||||||
 | 
					                                                                         self.v_proj.weight,
 | 
				
			||||||
 | 
					                                                                         position_ids,
 | 
				
			||||||
 | 
					                                                                         cache_k, cache_v,
 | 
				
			||||||
 | 
					                                                                         self.q_proj.weight.qtype,
 | 
				
			||||||
 | 
					                                                                         kv_seq_len,
 | 
				
			||||||
 | 
					                                                                         self.head_dim)
 | 
				
			||||||
 | 
					        kv_seq_len += 1
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # update past_key_value's seem_tokens and kv caches.
 | 
				
			||||||
 | 
					        if self.layer_idx == 0:
 | 
				
			||||||
 | 
					            past_key_value.seen_tokens = kv_seq_len
 | 
				
			||||||
 | 
					        past_key_value.key_cache[self.layer_idx] = key_states
 | 
				
			||||||
 | 
					        past_key_value.value_cache[self.layer_idx] = value_states
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        query_states = self.q_proj(hidden_states)
 | 
				
			||||||
 | 
					        key_states = self.k_proj(hidden_states)
 | 
				
			||||||
 | 
					        value_states = self.v_proj(hidden_states)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
 | 
				
			||||||
 | 
					        key_states = key_states.view(bsz, q_len,
 | 
				
			||||||
 | 
					                                     self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
				
			||||||
 | 
					        value_states = value_states.view(bsz, q_len,
 | 
				
			||||||
 | 
					                                         self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        kv_seq_len = key_states.shape[-2]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if past_key_value is not None:
 | 
				
			||||||
 | 
					            if self.layer_idx is None:
 | 
				
			||||||
 | 
					                invalidInputError(False,
 | 
				
			||||||
 | 
					                                  "The cache structure has changed since version v4.36. "
 | 
				
			||||||
 | 
					                                  f"If you are using {self.__class__.__name__} for "
 | 
				
			||||||
 | 
					                                  "auto-regressive decodingwith k/v caching, please make sure "
 | 
				
			||||||
 | 
					                                  "to initialize the attention class with a layer index.")
 | 
				
			||||||
 | 
					            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if use_fuse_rope:
 | 
				
			||||||
 | 
					            query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
 | 
				
			||||||
 | 
					                                                                         key_states,
 | 
				
			||||||
 | 
					                                                                         position_ids,
 | 
				
			||||||
 | 
					                                                                         "mistral")
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
				
			||||||
 | 
					            query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
 | 
				
			||||||
 | 
					                                                            cos, sin, position_ids, "mistral")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if past_key_value is not None:
 | 
				
			||||||
 | 
					            # update the number of seen tokens
 | 
				
			||||||
 | 
					            if self.layer_idx == 0:
 | 
				
			||||||
 | 
					                past_key_value.seen_tokens += key_states.shape[-2]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            # reuse k, v, self_attention
 | 
				
			||||||
 | 
					            # update `past_key_value` with `key_states` and `value_states` for layer `layer_idx`
 | 
				
			||||||
 | 
					            if len(past_key_value.key_cache) <= self.layer_idx:
 | 
				
			||||||
 | 
					                past_key_value.key_cache.append(key_states)
 | 
				
			||||||
 | 
					                past_key_value.value_cache.append(value_states)
 | 
				
			||||||
 | 
					            else:
 | 
				
			||||||
 | 
					                cache_k = past_key_value.key_cache[self.layer_idx]
 | 
				
			||||||
 | 
					                cache_v = past_key_value.value_cache[self.layer_idx]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                if not enough_kv_room:
 | 
				
			||||||
 | 
					                    # allocate new
 | 
				
			||||||
 | 
					                    new_c_k, new_c_v = extend_kv_cache(bsz,
 | 
				
			||||||
 | 
					                                                       self.num_key_value_heads,  # Support GQA
 | 
				
			||||||
 | 
					                                                       self.head_dim,
 | 
				
			||||||
 | 
					                                                       cache_k.size(2),
 | 
				
			||||||
 | 
					                                                       kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
 | 
				
			||||||
 | 
					                                                       dtype=cache_k.dtype,
 | 
				
			||||||
 | 
					                                                       device=device)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                    new_c_k[:] = cache_k
 | 
				
			||||||
 | 
					                    new_c_v[:] = cache_v
 | 
				
			||||||
 | 
					                    cache_k = new_c_k
 | 
				
			||||||
 | 
					                    cache_v = new_c_v
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                key_states, value_states = append_kv_cache(cache_k, cache_v,
 | 
				
			||||||
 | 
					                                                           key_states, value_states)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                # update past_key_value
 | 
				
			||||||
 | 
					                past_key_value.key_cache[self.layer_idx] = key_states
 | 
				
			||||||
 | 
					                past_key_value.value_cache[self.layer_idx] = value_states
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # repeat k/v heads if n_kv_heads < n_heads
 | 
				
			||||||
 | 
					    key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
				
			||||||
 | 
					    value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    attn_output, attn_weights = compute_attn_outputs_weights(query_states, key_states, value_states,
 | 
				
			||||||
 | 
					                                                             bsz, q_len, kv_seq_len,
 | 
				
			||||||
 | 
					                                                             self.num_heads, self.head_dim,
 | 
				
			||||||
 | 
					                                                             self.hidden_size, attention_mask)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    attn_output = self.o_proj(attn_output)
 | 
					    attn_output = self.o_proj(attn_output)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in a new issue