mixstral fused qkv and rope (#9724)
* mixstral fused qkv and rope * fix and clean * fix style * update * update * fix * update * fix
This commit is contained in:
parent
e4f6e43675
commit
e36111e713
4 changed files with 108 additions and 65 deletions
|
|
@ -39,7 +39,7 @@ import math
|
|||
import torch.nn.functional as F
|
||||
from bigdl.llm.utils.common import invalidInputError
|
||||
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
|
||||
from bigdl.llm.transformers.models.utils import rotate_half, apply_rotary_pos_emb
|
||||
from bigdl.llm.transformers.models.utils import is_enough_kv_cache_room_4_31, apply_rotary_pos_emb
|
||||
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb_no_cache_xpu
|
||||
from bigdl.llm.transformers.low_bit_linear import SYM_INT4
|
||||
from bigdl.llm.ggml.quantize import ggml_tensor_qtype
|
||||
|
|
@ -111,11 +111,6 @@ def llama_mlp_forward(
|
|||
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
||||
|
||||
|
||||
def is_enough_kv_cache_room(past_key_value):
|
||||
return past_key_value is not None and \
|
||||
past_key_value[0].stride()[1] > past_key_value[0].size(2) * past_key_value[0].size(3)
|
||||
|
||||
|
||||
def should_use_fuse_rope(self, query_states, position_ids):
|
||||
use_fuse_rope = query_states.device.type == "xpu"
|
||||
use_fuse_rope = use_fuse_rope and not (self.training and query_states.requires_grad)
|
||||
|
|
@ -149,7 +144,7 @@ def llama_attention_forward_4_31(
|
|||
attention_dtype = original_dtype
|
||||
|
||||
use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
|
||||
enough_kv_room = is_enough_kv_cache_room(past_key_value)
|
||||
enough_kv_room = is_enough_kv_cache_room_4_31(past_key_value)
|
||||
is_q4_0 = self.q_proj.qtype == SYM_INT4
|
||||
no_tp = not self.config.pretraining_tp > 1
|
||||
decoding_fast_path = (no_tp and is_q4_0 and use_fuse_rope and
|
||||
|
|
|
|||
|
|
@ -44,7 +44,7 @@ from bigdl.llm.utils.common import invalidInputError
|
|||
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
|
||||
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb,\
|
||||
apply_rotary_pos_emb_no_cache_xpu
|
||||
from bigdl.llm.transformers.models.llama import is_enough_kv_cache_room
|
||||
from bigdl.llm.transformers.models.utils import is_enough_kv_cache_room_4_31
|
||||
from bigdl.llm.transformers.low_bit_linear import SYM_INT4
|
||||
|
||||
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
|
||||
|
|
@ -89,7 +89,7 @@ def mistral_attention_forward(
|
|||
device = hidden_states.device
|
||||
|
||||
use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
|
||||
enough_kv_room = is_enough_kv_cache_room(past_key_value)
|
||||
enough_kv_room = is_enough_kv_cache_room_4_31(past_key_value)
|
||||
decoding_fast_path = use_decoding_fast_path(self.q_proj.qtype,
|
||||
use_fuse_rope,
|
||||
enough_kv_room,
|
||||
|
|
|
|||
|
|
@ -47,7 +47,8 @@ from bigdl.llm.ggml.quantize import ggml_tensor_qtype
|
|||
from bigdl.llm.utils.common import invalidInputError
|
||||
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
|
||||
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb,\
|
||||
apply_rotary_pos_emb_no_cache_xpu
|
||||
apply_rotary_pos_emb_no_cache_xpu, is_enough_kv_cache_room_4_36
|
||||
from bigdl.llm.transformers.models.mistral import should_use_fuse_rope, use_decoding_fast_path
|
||||
|
||||
|
||||
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
|
||||
|
|
@ -142,69 +143,103 @@ def mixtral_attention_forward(
|
|||
bsz, q_len, _ = hidden_states.size()
|
||||
device = hidden_states.device
|
||||
|
||||
query_states = self.q_proj(hidden_states)
|
||||
key_states = self.k_proj(hidden_states)
|
||||
value_states = self.v_proj(hidden_states)
|
||||
use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
|
||||
enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx)
|
||||
decoding_fast_path = use_decoding_fast_path(self.q_proj.qtype,
|
||||
use_fuse_rope,
|
||||
enough_kv_room,
|
||||
bsz * q_len)
|
||||
|
||||
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
key_states = key_states.view(bsz, q_len,
|
||||
self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
value_states = value_states.view(bsz, q_len,
|
||||
self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
if past_key_value is not None:
|
||||
if self.layer_idx is None:
|
||||
invalidInputError(False, "The cache structure has changed since version v4.36. "
|
||||
f"If you are using {self.__class__.__name__} for "
|
||||
"auto-regressive decodingwith k/v caching, please make sure "
|
||||
"to initialize the attention class with a layer index.")
|
||||
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
||||
|
||||
if query_states.device.type == "xpu" and not (self.training and query_states.requires_grad):
|
||||
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
|
||||
key_states,
|
||||
position_ids,
|
||||
"mixtral")
|
||||
else:
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
||||
cos, sin, position_ids, "mixtral")
|
||||
|
||||
if past_key_value is not None:
|
||||
# update the number of seen tokens
|
||||
if decoding_fast_path:
|
||||
hidden_states = hidden_states.view(1, -1)
|
||||
cache_k = past_key_value.key_cache[self.layer_idx]
|
||||
cache_v = past_key_value.value_cache[self.layer_idx]
|
||||
kv_seq_len = cache_k.shape[-2]
|
||||
import linear_q4_0
|
||||
query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
|
||||
self.q_proj.weight,
|
||||
self.k_proj.weight,
|
||||
self.v_proj.weight,
|
||||
position_ids,
|
||||
cache_k, cache_v,
|
||||
self.q_proj.weight.qtype,
|
||||
kv_seq_len,
|
||||
self.head_dim)
|
||||
kv_seq_len += 1
|
||||
# update past_key_value's seem_tokens and kv caches.
|
||||
if self.layer_idx == 0:
|
||||
past_key_value.seen_tokens += key_states.shape[-2]
|
||||
past_key_value.seen_tokens = kv_seq_len
|
||||
past_key_value.key_cache[self.layer_idx] = key_states
|
||||
past_key_value.value_cache[self.layer_idx] = value_states
|
||||
|
||||
# reuse k, v, self_attention
|
||||
# update `past_key_value` with `key_states` and `value_states` for layer `layer_idx`
|
||||
if len(past_key_value.key_cache) <= self.layer_idx:
|
||||
past_key_value.key_cache.append(key_states)
|
||||
past_key_value.value_cache.append(value_states)
|
||||
else:
|
||||
query_states = self.q_proj(hidden_states)
|
||||
key_states = self.k_proj(hidden_states)
|
||||
value_states = self.v_proj(hidden_states)
|
||||
|
||||
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
key_states = key_states.view(bsz, q_len,
|
||||
self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
value_states = value_states.view(bsz, q_len,
|
||||
self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
if past_key_value is not None:
|
||||
if self.layer_idx is None:
|
||||
invalidInputError(False,
|
||||
"The cache structure has changed since version v4.36. "
|
||||
f"If you are using {self.__class__.__name__} for "
|
||||
"auto-regressive decodingwith k/v caching, please make sure "
|
||||
"to initialize the attention class with a layer index.")
|
||||
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
||||
|
||||
if use_fuse_rope:
|
||||
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
|
||||
key_states,
|
||||
position_ids,
|
||||
"mixtral")
|
||||
else:
|
||||
cache_k = past_key_value.key_cache[self.layer_idx]
|
||||
cache_v = past_key_value.value_cache[self.layer_idx]
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
||||
cos, sin, position_ids, "mixtral")
|
||||
|
||||
if cache_k.stride()[1] <= cache_k.size(2) * cache_k.size(3):
|
||||
# allocate new
|
||||
new_cache_k, new_cache_v = extend_kv_cache(bsz,
|
||||
self.num_key_value_heads, # Support GQA
|
||||
self.head_dim,
|
||||
cache_k.size(2),
|
||||
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
|
||||
dtype=cache_k.dtype,
|
||||
device=device)
|
||||
if past_key_value is not None:
|
||||
# update the number of seen tokens
|
||||
if self.layer_idx == 0:
|
||||
past_key_value.seen_tokens += key_states.shape[-2]
|
||||
|
||||
new_cache_k[:] = cache_k
|
||||
new_cache_v[:] = cache_v
|
||||
cache_k = new_cache_k
|
||||
cache_v = new_cache_v
|
||||
# reuse k, v, self_attention
|
||||
# update `past_key_value` with `key_states` and `value_states` for layer `layer_idx`
|
||||
if len(past_key_value.key_cache) <= self.layer_idx:
|
||||
past_key_value.key_cache.append(key_states)
|
||||
past_key_value.value_cache.append(value_states)
|
||||
else:
|
||||
cache_k = past_key_value.key_cache[self.layer_idx]
|
||||
cache_v = past_key_value.value_cache[self.layer_idx]
|
||||
|
||||
key_states, value_states = append_kv_cache(cache_k, cache_v, key_states, value_states)
|
||||
if not enough_kv_room:
|
||||
# allocate new
|
||||
new_c_k, new_c_v = extend_kv_cache(bsz,
|
||||
self.num_key_value_heads, # Support GQA
|
||||
self.head_dim,
|
||||
cache_k.size(2),
|
||||
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
|
||||
dtype=cache_k.dtype,
|
||||
device=device)
|
||||
|
||||
# update past_key_value
|
||||
past_key_value.key_cache[self.layer_idx] = key_states
|
||||
past_key_value.value_cache[self.layer_idx] = value_states
|
||||
new_c_k[:] = cache_k
|
||||
new_c_v[:] = cache_v
|
||||
cache_k = new_c_k
|
||||
cache_v = new_c_v
|
||||
|
||||
key_states, value_states = append_kv_cache(cache_k,
|
||||
cache_v,
|
||||
key_states,
|
||||
value_states)
|
||||
|
||||
# update past_key_value
|
||||
past_key_value.key_cache[self.layer_idx] = key_states
|
||||
past_key_value.value_cache[self.layer_idx] = value_states
|
||||
|
||||
# repeat k/v heads if n_kv_heads < n_heads
|
||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||
|
|
|
|||
|
|
@ -106,3 +106,16 @@ def apply_rotary_pos_emb_no_cache_xpu(q, k, position_ids, model_family):
|
|||
else:
|
||||
invalidInputError(False,
|
||||
f"{model_family} is not supported.")
|
||||
|
||||
|
||||
def is_enough_kv_cache_room_4_36(past_key_value, idx):
|
||||
# to determinate if is enough kv cache room in transformers==4.36
|
||||
return past_key_value is not None and len(past_key_value.key_cache) > idx and \
|
||||
past_key_value.key_cache[idx].stride()[1] > past_key_value.key_cache[idx].size(2) * \
|
||||
past_key_value.key_cache[idx].size(3)
|
||||
|
||||
|
||||
def is_enough_kv_cache_room_4_31(past_key_value):
|
||||
# to determinate if is enough kv cache room in transformers between 4.31 and 4.35
|
||||
return past_key_value is not None and \
|
||||
past_key_value[0].stride()[1] > past_key_value[0].size(2) * past_key_value[0].size(3)
|
||||
|
|
|
|||
Loading…
Reference in a new issue