R1 Hybrid: Add Benchmark for DeepSeek R1 transformers example (#12854)

* init

* fix

* update

* update

* fix

* fix
This commit is contained in:
Xiangyu Tian 2025-02-19 18:33:21 +08:00 committed by GitHub
parent 5d041f9ebf
commit b26409d53f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 5020 additions and 4 deletions

View file

@ -21,7 +21,7 @@ SCRIPT_DIR="$( cd "$( dirname "$0" )" && pwd )"
PYTHON_ROOT_DIR="$SCRIPT_DIR/.."
echo $PYTHON_ROOT_DIR
PATHS_TO_CHECK="$SCRIPT_DIR/../../src"
PATTERNS_TO_EXCLUDE="__init__.py,log4Error.py,$SCRIPT_DIR/../../src/ipex_llm/langchain/*,$SCRIPT_DIR/../../src/ipex_llm/transformers/gguf/models/model_implement/yuan2/*,benchmark_util_4_29.py,benchmark_util_4_42.py,benchmark_util_4_43.py,benchmark_util_4_44.py,benchmark_util_4_45.py,benchmark_util_4_47.py,tgi_api_server.py,api_server.py"
PATTERNS_TO_EXCLUDE="__init__.py,log4Error.py,$SCRIPT_DIR/../../src/ipex_llm/langchain/*,$SCRIPT_DIR/../../src/ipex_llm/transformers/gguf/models/model_implement/yuan2/*,benchmark_util_4_29.py,benchmark_util_4_42.py,benchmark_util_4_43.py,benchmark_util_4_44.py,benchmark_util_4_45.py,benchmark_util_4_47.py,benchmark_util_deepseek.py,tgi_api_server.py,api_server.py"
PEP8_REPORT_PATH="$PYTHON_ROOT_DIR/test/pep8-report.txt"
PYLINT_REPORT_PATH="$PYTHON_ROOT_DIR/test/pylint-report.txt"
PYLINT_INSTALL_INFO="$PYTHON_ROOT_DIR/test/pylint-info.txt"

View file

@ -0,0 +1,109 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import List, Optional, Tuple, Union
import warnings
import os
import torch
from torch import nn
import time
import argparse
import ipex_llm
import numpy as np
from ipex_llm.transformers import AutoModelForCausalLM, convert_model_hybrid
from ipex_llm.utils.benchmark_util_deepseek import BenchmarkWrapper
from transformers import AutoTokenizer, GenerationConfig
from transformers.cache_utils import Cache, DynamicCache
PROMPT_FORMAT = """
A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think> <answer> answer here </answer>.
User: {prompt}.
Assistant: <think>
"""
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model')
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="If \( a > 1 \), then the sum of the real solutions of \( \sqrt{a} - \sqrt{a + x} = x \) is equal to:",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
parser.add_argument('--load-path', type=str, default=None,
help='The path to load the low-bit model.')
parser.add_argument('--warm-up', type=int, default=1,
help='Num of warm-up trials.')
parser.add_argument('--num-trials', type=int, default=1,
help='Num of trials to run.')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
load_path = args.load_path
if load_path:
model = AutoModelForCausalLM.load_low_bit(load_path, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(load_path,
trust_remote_code=True)
else:
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=True,
trust_remote_code=True,
use_cache=True)
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
model = model.bfloat16()
model = convert_model_hybrid(model)
print(model)
model = BenchmarkWrapper(model)
e2e_time_list = []
prefill_time_list = []
rest_cost_mean_list = []
# Generate predicted tokens
with torch.inference_mode():
prompt = PROMPT_FORMAT.format(prompt=args.prompt)
input_ids = tokenizer.encode(prompt, return_tensors="pt")
# ipex_llm model needs a warmup, then inference time can be accurate
for i in range(args.warm_up):
output = model.generate(input_ids,
max_new_tokens=args.n_predict,
min_new_tokens=args.n_predict)
# start inference
for i in range(args.num_trials):
st = time.time()
output = model.generate(input_ids,
max_new_tokens=args.n_predict,
min_new_tokens=args.n_predict)
torch.xpu.synchronize()
end = time.time()
output = output.cpu()
e2e_time_list.append(end - st)
prefill_time_list.append(model.first_cost)
rest_cost_mean_list.append(model.rest_cost_mean)
print('-'*20, 'Performance', '-'*20)
print(f"End-to-end time: {np.mean(e2e_time_list)} s")
print(f"Prefill time: {np.mean(prefill_time_list)} s")
print(f"Rest cost mean: {np.mean(rest_cost_mean_list) * 1000} ms")

View file

@ -24,8 +24,8 @@ import time
import argparse
import ipex_llm
from ipex_llm.transformers import convert_model_hybrid
from ipex_llm.transformers import AutoModelForCausalLM
from ipex_llm.transformers import AutoModelForCausalLM, convert_model_hybrid
from transformers import AutoTokenizer, GenerationConfig
from transformers.cache_utils import Cache, DynamicCache
@ -65,7 +65,7 @@ if __name__ == '__main__':
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
#model = model.bfloat16()
model = model.bfloat16()
model = convert_model_hybrid(model)
print(model)

File diff suppressed because it is too large Load diff