From b26409d53f909026db9bf99af1a73059626e7ee9 Mon Sep 17 00:00:00 2001 From: Xiangyu Tian <109123695+xiangyuT@users.noreply.github.com> Date: Wed, 19 Feb 2025 18:33:21 +0800 Subject: [PATCH] R1 Hybrid: Add Benchmark for DeepSeek R1 transformers example (#12854) * init * fix * update * update * fix * fix --- python/llm/dev/test/lint-python | 2 +- .../llm/example/GPU/DeepSeek-R1/benchmark.py | 109 + .../GPU/DeepSeek-R1/generate_hybrid.py | 6 +- .../ipex_llm/utils/benchmark_util_deepseek.py | 4907 +++++++++++++++++ 4 files changed, 5020 insertions(+), 4 deletions(-) create mode 100644 python/llm/example/GPU/DeepSeek-R1/benchmark.py create mode 100644 python/llm/src/ipex_llm/utils/benchmark_util_deepseek.py diff --git a/python/llm/dev/test/lint-python b/python/llm/dev/test/lint-python index 4a305961..09c22763 100755 --- a/python/llm/dev/test/lint-python +++ b/python/llm/dev/test/lint-python @@ -21,7 +21,7 @@ SCRIPT_DIR="$( cd "$( dirname "$0" )" && pwd )" PYTHON_ROOT_DIR="$SCRIPT_DIR/.." echo $PYTHON_ROOT_DIR PATHS_TO_CHECK="$SCRIPT_DIR/../../src" -PATTERNS_TO_EXCLUDE="__init__.py,log4Error.py,$SCRIPT_DIR/../../src/ipex_llm/langchain/*,$SCRIPT_DIR/../../src/ipex_llm/transformers/gguf/models/model_implement/yuan2/*,benchmark_util_4_29.py,benchmark_util_4_42.py,benchmark_util_4_43.py,benchmark_util_4_44.py,benchmark_util_4_45.py,benchmark_util_4_47.py,tgi_api_server.py,api_server.py" +PATTERNS_TO_EXCLUDE="__init__.py,log4Error.py,$SCRIPT_DIR/../../src/ipex_llm/langchain/*,$SCRIPT_DIR/../../src/ipex_llm/transformers/gguf/models/model_implement/yuan2/*,benchmark_util_4_29.py,benchmark_util_4_42.py,benchmark_util_4_43.py,benchmark_util_4_44.py,benchmark_util_4_45.py,benchmark_util_4_47.py,benchmark_util_deepseek.py,tgi_api_server.py,api_server.py" PEP8_REPORT_PATH="$PYTHON_ROOT_DIR/test/pep8-report.txt" PYLINT_REPORT_PATH="$PYTHON_ROOT_DIR/test/pylint-report.txt" PYLINT_INSTALL_INFO="$PYTHON_ROOT_DIR/test/pylint-info.txt" diff --git a/python/llm/example/GPU/DeepSeek-R1/benchmark.py b/python/llm/example/GPU/DeepSeek-R1/benchmark.py new file mode 100644 index 00000000..15c49f0c --- /dev/null +++ b/python/llm/example/GPU/DeepSeek-R1/benchmark.py @@ -0,0 +1,109 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +from typing import List, Optional, Tuple, Union +import warnings +import os + +import torch +from torch import nn +import time +import argparse +import ipex_llm +import numpy as np + +from ipex_llm.transformers import AutoModelForCausalLM, convert_model_hybrid +from ipex_llm.utils.benchmark_util_deepseek import BenchmarkWrapper + +from transformers import AutoTokenizer, GenerationConfig +from transformers.cache_utils import Cache, DynamicCache + + +PROMPT_FORMAT = """ +A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within and tags, respectively, i.e., reasoning process here answer here . +User: {prompt}. +Assistant: +""" + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model') + parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf", + help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded' + ', or the path to the huggingface checkpoint folder') + parser.add_argument('--prompt', type=str, default="If \( a > 1 \), then the sum of the real solutions of \( \sqrt{a} - \sqrt{a + x} = x \) is equal to:", + help='Prompt to infer') + parser.add_argument('--n-predict', type=int, default=32, + help='Max tokens to predict') + parser.add_argument('--load-path', type=str, default=None, + help='The path to load the low-bit model.') + parser.add_argument('--warm-up', type=int, default=1, + help='Num of warm-up trials.') + parser.add_argument('--num-trials', type=int, default=1, + help='Num of trials to run.') + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + + load_path = args.load_path + if load_path: + model = AutoModelForCausalLM.load_low_bit(load_path, trust_remote_code=True) + tokenizer = AutoTokenizer.from_pretrained(load_path, + trust_remote_code=True) + else: + model = AutoModelForCausalLM.from_pretrained(model_path, + load_in_4bit=True, + optimize_model=True, + trust_remote_code=True, + use_cache=True) + tokenizer = AutoTokenizer.from_pretrained(model_path, + trust_remote_code=True) + + model = model.bfloat16() + model = convert_model_hybrid(model) + print(model) + + model = BenchmarkWrapper(model) + e2e_time_list = [] + prefill_time_list = [] + rest_cost_mean_list = [] + + # Generate predicted tokens + with torch.inference_mode(): + prompt = PROMPT_FORMAT.format(prompt=args.prompt) + input_ids = tokenizer.encode(prompt, return_tensors="pt") + # ipex_llm model needs a warmup, then inference time can be accurate + for i in range(args.warm_up): + output = model.generate(input_ids, + max_new_tokens=args.n_predict, + min_new_tokens=args.n_predict) + + # start inference + for i in range(args.num_trials): + st = time.time() + output = model.generate(input_ids, + max_new_tokens=args.n_predict, + min_new_tokens=args.n_predict) + torch.xpu.synchronize() + end = time.time() + output = output.cpu() + e2e_time_list.append(end - st) + prefill_time_list.append(model.first_cost) + rest_cost_mean_list.append(model.rest_cost_mean) + + print('-'*20, 'Performance', '-'*20) + print(f"End-to-end time: {np.mean(e2e_time_list)} s") + print(f"Prefill time: {np.mean(prefill_time_list)} s") + print(f"Rest cost mean: {np.mean(rest_cost_mean_list) * 1000} ms") diff --git a/python/llm/example/GPU/DeepSeek-R1/generate_hybrid.py b/python/llm/example/GPU/DeepSeek-R1/generate_hybrid.py index 4906955e..eb6bdb5e 100644 --- a/python/llm/example/GPU/DeepSeek-R1/generate_hybrid.py +++ b/python/llm/example/GPU/DeepSeek-R1/generate_hybrid.py @@ -24,8 +24,8 @@ import time import argparse import ipex_llm -from ipex_llm.transformers import convert_model_hybrid -from ipex_llm.transformers import AutoModelForCausalLM +from ipex_llm.transformers import AutoModelForCausalLM, convert_model_hybrid + from transformers import AutoTokenizer, GenerationConfig from transformers.cache_utils import Cache, DynamicCache @@ -65,7 +65,7 @@ if __name__ == '__main__': tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) - #model = model.bfloat16() + model = model.bfloat16() model = convert_model_hybrid(model) print(model) diff --git a/python/llm/src/ipex_llm/utils/benchmark_util_deepseek.py b/python/llm/src/ipex_llm/utils/benchmark_util_deepseek.py new file mode 100644 index 00000000..dd5e8992 --- /dev/null +++ b/python/llm/src/ipex_llm/utils/benchmark_util_deepseek.py @@ -0,0 +1,4907 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +# This file is adapted from +# https://github.com/huggingface/transformers/blob/v4.47.0/src/transformers/generation/utils.py + +# coding=utf-8 +# Copyright 2020 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team. +# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import copy +import time +import inspect +import os +import warnings +from dataclasses import dataclass +from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union + +import numpy as np +import torch +import torch.distributed as dist +from torch import nn +from torch.nn import functional as F + +from transformers.cache_utils import ( + Cache, + DynamicCache, + EncoderDecoderCache, + OffloadedCache, + QuantizedCacheConfig, + StaticCache, +) +from transformers.configuration_utils import PretrainedConfig +from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled +from transformers.integrations.fsdp import is_fsdp_managed_module +from transformers.modeling_outputs import CausalLMOutputWithPast, Seq2SeqLMOutput +from transformers.pytorch_utils import isin_mps_friendly +from transformers.tokenization_utils import ExtensionsTrie +from transformers.utils import ( + ModelOutput, + is_accelerate_available, + is_hqq_available, + is_optimum_quanto_available, + is_torchdynamo_compiling, + logging, +) +from transformers.generation.beam_constraints import DisjunctiveConstraint, PhrasalConstraint +from transformers.generation.beam_search import BeamScorer, BeamSearchScorer, ConstrainedBeamSearchScorer +from transformers.generation.candidate_generator import ( + AssistedCandidateGenerator, + AssistedCandidateGeneratorDifferentTokenizers, + CandidateGenerator, + EarlyExitCandidateGenerator, + PromptLookupCandidateGenerator, + _crop_past_key_values, + _prepare_attention_mask, + _prepare_token_type_ids, +) +from transformers.generation.configuration_utils import ( + NEED_SETUP_CACHE_CLASSES_MAPPING, + QUANT_BACKEND_CLASSES_MAPPING, + GenerationConfig, + GenerationMode, +) +from transformers.generation.logits_process import ( + EncoderNoRepeatNGramLogitsProcessor, + EncoderRepetitionPenaltyLogitsProcessor, + EpsilonLogitsWarper, + EtaLogitsWarper, + ExponentialDecayLengthPenalty, + ForcedBOSTokenLogitsProcessor, + ForcedEOSTokenLogitsProcessor, + HammingDiversityLogitsProcessor, + InfNanRemoveLogitsProcessor, + LogitNormalization, + LogitsProcessorList, + MinLengthLogitsProcessor, + MinNewTokensLengthLogitsProcessor, + MinPLogitsWarper, + NoBadWordsLogitsProcessor, + NoRepeatNGramLogitsProcessor, + PrefixConstrainedLogitsProcessor, + RepetitionPenaltyLogitsProcessor, + SequenceBiasLogitsProcessor, + SuppressTokensAtBeginLogitsProcessor, + SuppressTokensLogitsProcessor, + TemperatureLogitsWarper, + TopKLogitsWarper, + TopPLogitsWarper, + TypicalLogitsWarper, + UnbatchedClassifierFreeGuidanceLogitsProcessor, +) +from transformers.generation.stopping_criteria import ( + ConfidenceCriteria, + EosTokenCriteria, + MaxLengthCriteria, + MaxTimeCriteria, + StoppingCriteria, + StoppingCriteriaList, + StopStringCriteria, +) + + +if TYPE_CHECKING: + from transformers.modeling_utils import PreTrainedModel + from transformers.tokenization_utils_base import PreTrainedTokenizerBase + from transformers.generation.streamers import BaseStreamer + +logger = logging.get_logger(__name__) + +if is_accelerate_available(): + from accelerate.hooks import AlignDevicesHook, add_hook_to_module + + +@dataclass +class GenerateDecoderOnlyOutput(ModelOutput): + """ + Outputs of decoder-only generation models, when using non-beam methods. + + Args: + sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter + if all batches finished early due to the `eos_token_id`. + scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True`): + Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) + at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for + each generated token), with each tensor of shape `(batch_size, config.vocab_size)`. + logits (`tuple(torch.FloatTensor)` *optional*, returned when `output_logits=True`): + Unprocessed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) + at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for + each generated token), with each tensor of shape `(batch_size, config.vocab_size)`. + attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True`): + Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of + `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`. + hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True`): + Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of + `torch.FloatTensor` of shape `(batch_size, generated_length, hidden_size)`. + past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True`): + Returns the model cache, used to speed up decoding. Different models have a different cache format, check + the model's documentation. Usually, a [`~cache_utils.Cache`] instance. + """ + + sequences: torch.LongTensor = None + scores: Optional[Tuple[torch.FloatTensor]] = None + logits: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None + hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None + past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None + + +@dataclass +class GenerateEncoderDecoderOutput(ModelOutput): + """ + Outputs of encoder-decoder generation models, when using non-beam methods. + + Args: + sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`): + The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter + if all batches finished early due to the `eos_token_id`. + scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True`): + Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) + at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for + each generated token), with each tensor of shape `(batch_size, config.vocab_size)`. + logits (`tuple(torch.FloatTensor)` *optional*, returned when `output_logits=True`): + Unprocessed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) + at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for + each generated token), with each tensor of shape `(batch_size, config.vocab_size)`. + encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer of the decoder) of shape `(batch_size, num_heads, + sequence_length, sequence_length)`. + encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True`): + Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of + `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`. + cross_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True`): + Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of + `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`. + decoder_hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True`): + Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of + `torch.FloatTensor` of shape `(batch_size, generated_length, hidden_size)`. + past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Returns the model cache, used to speed up decoding. Different models have a different cache format, check + the model's documentation. Usually, a [`~cache_utils.Cache`] instance. + """ + + sequences: torch.LongTensor = None + scores: Optional[Tuple[torch.FloatTensor]] = None + logits: Optional[Tuple[torch.FloatTensor]] = None + encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None + encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None + cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None + decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None + past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None + + +@dataclass +class GenerateBeamDecoderOnlyOutput(ModelOutput): + """ + Outputs of decoder-only generation models, when using beam methods. + + Args: + sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`): + The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter + if all batches finished early due to the `eos_token_id`. + sequences_scores (`torch.FloatTensor` of shape `(batch_size*num_return_sequences)`, *optional*, returned when `output_scores=True`): + Final beam scores of the generated `sequences`. + scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True`): + Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting + of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam. + Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token), + with each tensor of shape `(batch_size*num_beams, config.vocab_size)`. + logits (`tuple(torch.FloatTensor)` *optional*, returned when `output_logits=True`): + Unprocessed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) + at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for + each generated token), with each tensor of shape `(batch_size, config.vocab_size)`. + beam_indices (`torch.LongTensor`, *optional*, returned when `output_scores=True`): + Beam indices of generated token id at each generation step. `torch.LongTensor` of shape + `(batch_size*num_return_sequences, sequence_length)`. + attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True`): + Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of + `torch.FloatTensor` of shape `(batch_size*num_beams, num_heads, generated_length, sequence_length)`. + hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True`): + Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of + `torch.FloatTensor` of shape `(batch_size*num_beams*num_return_sequences, generated_length, hidden_size)`. + past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True`): + Returns the model cache, used to speed up decoding. Different models have a different cache format, check + the model's documentation. Usually, a [`~cache_utils.Cache`] instance. + """ + + sequences: torch.LongTensor = None + sequences_scores: Optional[torch.FloatTensor] = None + scores: Optional[Tuple[torch.FloatTensor]] = None + logits: Optional[Tuple[torch.FloatTensor]] = None + beam_indices: Optional[torch.LongTensor] = None + attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None + hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None + past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None + + +@dataclass +class GenerateBeamEncoderDecoderOutput(ModelOutput): + """ + Outputs of encoder-decoder generation models, when using beam methods. + + Args: + sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`): + The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter + if all batches finished early due to the `eos_token_id`. + sequences_scores (`torch.FloatTensor` of shape `(batch_size*num_return_sequences)`, *optional*, returned when `output_scores=True`): + Final beam scores of the generated `sequences`. + scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True`): + Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting + of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam. + Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token), + with each tensor of shape `(batch_size*num_beams, config.vocab_size)`. + logits (`tuple(torch.FloatTensor)` *optional*, returned when `output_logits=True`): + Unprocessed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) + at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for + each generated token), with each tensor of shape `(batch_size, config.vocab_size)`. + beam_indices (`torch.LongTensor`, *optional*, returned when `output_scores=True`): + Beam indices of generated token id at each generation step. `torch.LongTensor` of shape + `(batch_size*num_return_sequences, sequence_length)`. + encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer of the decoder) of shape `(batch_size, num_heads, + sequence_length, sequence_length)`. + encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size*num_beams*num_return_sequences, sequence_length, hidden_size)`. + decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True`): + Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of + `torch.FloatTensor` of shape `(batch_size*num_beams*num_return_sequences, num_heads, generated_length, + sequence_length)`. + cross_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True`): + Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of + `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`. + decoder_hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True`): + Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of + `torch.FloatTensor` of shape `(batch_size*num_beams*num_return_sequences, generated_length, hidden_size)`. + past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True`): + Returns the model cache, used to speed up decoding. Different models have a different cache format, check + the model's documentation. Usually, a [`~cache_utils.Cache`] instance. + """ + + sequences: torch.LongTensor = None + sequences_scores: Optional[torch.FloatTensor] = None + scores: Optional[Tuple[torch.FloatTensor]] = None + logits: Optional[Tuple[torch.FloatTensor]] = None + beam_indices: Optional[torch.LongTensor] = None + encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None + encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None + cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None + decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None + past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None + + +# TODO (joao): remove the equivalent classes and typing shortcuts below in v5 +# Equivalent classes (kept for retrocompatibility purposes) +GreedySearchDecoderOnlyOutput = GenerateDecoderOnlyOutput +ContrastiveSearchDecoderOnlyOutput = GenerateDecoderOnlyOutput +SampleDecoderOnlyOutput = GenerateDecoderOnlyOutput + +ContrastiveSearchEncoderDecoderOutput = GenerateEncoderDecoderOutput +GreedySearchEncoderDecoderOutput = GenerateEncoderDecoderOutput +SampleEncoderDecoderOutput = GenerateEncoderDecoderOutput + +BeamSearchDecoderOnlyOutput = GenerateBeamDecoderOnlyOutput +BeamSampleDecoderOnlyOutput = GenerateBeamDecoderOnlyOutput + +BeamSearchEncoderDecoderOutput = GenerateBeamEncoderDecoderOutput +BeamSampleEncoderDecoderOutput = GenerateBeamEncoderDecoderOutput + +GreedySearchOutput = Union[GreedySearchEncoderDecoderOutput, GreedySearchDecoderOnlyOutput] +SampleOutput = Union[SampleEncoderDecoderOutput, SampleDecoderOnlyOutput] +BeamSearchOutput = Union[BeamSearchEncoderDecoderOutput, BeamSearchDecoderOnlyOutput] +BeamSampleOutput = Union[BeamSampleEncoderDecoderOutput, BeamSampleDecoderOnlyOutput] +ContrastiveSearchOutput = Union[ContrastiveSearchEncoderDecoderOutput, ContrastiveSearchDecoderOnlyOutput] + +# Typing shortcuts +GenerateNonBeamOutput = Union[GenerateDecoderOnlyOutput, GenerateEncoderDecoderOutput] +GenerateBeamOutput = Union[GenerateBeamDecoderOnlyOutput, GenerateBeamEncoderDecoderOutput] +GenerateOutput = Union[GenerateNonBeamOutput, GenerateBeamOutput] + + +class BenchmarkWrapper: + """ + A class containing all functions for auto-regressive text generation, to be used as a mixin in [`PreTrainedModel`]. + + The class exposes [`~generation.GenerationMixin.generate`], which can be used for: + - *greedy decoding* if `num_beams=1` and `do_sample=False` + - *contrastive search* if `penalty_alpha>0` and `top_k>1` + - *multinomial sampling* if `num_beams=1` and `do_sample=True` + - *beam-search decoding* if `num_beams>1` and `do_sample=False` + - *beam-search multinomial sampling* if `num_beams>1` and `do_sample=True` + - *diverse beam-search decoding* if `num_beams>1` and `num_beam_groups>1` + - *constrained beam-search decoding* if `constraints!=None` or `force_words_ids!=None` + - *assisted decoding* if `assistant_model` or `prompt_lookup_num_tokens` is passed to `.generate()` + + To learn more about decoding strategies refer to the [text generation strategies guide](../generation_strategies). + """ + + def __init__(self, model, do_print=False, verbose=False): + self.model = model + self.do_print = do_print + self.verbose = verbose + self.encoder_time = 0.0 + self.first_cost = 0.0 + self.rest_cost_mean = 0.0 + self.peak_memory = 0.0 + print(self.model.__class__) + + def __getattr__(self, attr): + if hasattr(self.model, attr): + return getattr(self.model, attr) + else: + raise AttributeError(f"'{type(self).__name__}' object and its model have no attribute '{attr}'") + + def prepare_inputs_for_generation(self, *args, **kwargs): + return self.model.prepare_inputs_for_generation(*args, **kwargs) + + # def prepare_inputs_for_generation( + # self, + # input_ids: torch.LongTensor, + # past_key_values: Optional[Cache] = None, + # attention_mask: Optional[torch.LongTensor] = None, + # inputs_embeds: Optional[torch.FloatTensor] = None, + # cache_position: Optional[torch.LongTensor] = None, + # **kwargs, + # ): + # """ + # Prepare the model inputs for generation. In includes operations like computing the 4D attention mask or + # slicing inputs given the existing cache. + + # See the forward pass in the model documentation for expected arguments (different models might have different + # requirements for e.g. `past_key_values`). This function should work as is for most LLMs. + # """ + + # # 1. Handle BC: + # model_inputs = {} + # # - some models don't have `Cache` support (which implies they don't expect `cache_position` in `forward`) + # if self._supports_cache_class: + # model_inputs["cache_position"] = cache_position + # # - `cache_position` was not a mandatory input in `prepare_inputs_for_generation` for those models, and this + # # function may be called outside of `generate`. Handle most use cases by creating `cache_position` on the fly + # # (this alternative is not as robust as calling `generate` and letting it create `cache_position`) + # elif cache_position is None: + # past_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 + # cache_position = torch.arange(past_length, input_ids.shape[1], dtype=torch.long, device=input_ids.device) + + # # 2. Generic cache-dependent input preparation + # # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens + # # Exception 1: when passing input_embeds, input_ids may be missing entries + # # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here + # # Exception 3: with synced GPUs cache_position may go out of bounds, but we only want dummy token in that case. + # # (we can't check exception 3 while compiling) + # if past_key_values is not None: + # model_inputs["past_key_values"] = past_key_values + # if ( + # inputs_embeds is not None # Exception 1 + # or (is_torchdynamo_compiling() or cache_position[-1] >= input_ids.shape[1]) # Exception 3 + # ): + # input_ids = input_ids[:, -cache_position.shape[0] :] + # elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2) + # input_ids = input_ids[:, cache_position] + + # # 3. Prepare base model inputs + # input_ids_key = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids" + # # if `inputs_embeds` are passed, we only want to use them in the 1st generation step + # if not self.config.is_encoder_decoder: + # if inputs_embeds is not None and cache_position[0] == 0: + # model_inputs[input_ids_key] = None + # model_inputs["inputs_embeds"] = inputs_embeds + # else: + # # `clone` calls in this function ensure a consistent stride. See #32227 + # model_inputs[input_ids_key] = input_ids.clone(memory_format=torch.contiguous_format) + # model_inputs["inputs_embeds"] = None + # else: + # model_inputs[input_ids_key] = input_ids.clone(memory_format=torch.contiguous_format) + + # # 4. Create missing `position_ids` on the fly + # if ( + # attention_mask is not None + # and kwargs.get("position_ids") is None + # and "position_ids" in set(inspect.signature(self.forward).parameters.keys()) + # ): + # position_ids = attention_mask.long().cumsum(-1) - 1 + # position_ids.masked_fill_(attention_mask == 0, 1) + # kwargs["position_ids"] = position_ids # placed in kwargs for further processing (see below) + + # # 5. Slice model inputs if it's an input that should have the same length as `input_ids` + # for model_input_name in ["position_ids", "token_type_ids"]: + # model_input = kwargs.get(model_input_name) + # if model_input is not None: + # if past_key_values is not None: + # current_input_length = ( + # model_inputs["inputs_embeds"].shape[1] + # if model_inputs["inputs_embeds"] is not None + # else model_inputs[input_ids_key].shape[1] + # ) + # model_input = model_input[:, -current_input_length:] + # model_input = model_input.clone(memory_format=torch.contiguous_format) + # model_inputs[model_input_name] = model_input + + # # 6. Create 4D attention mask is we are using a `StaticCache` (important for performant compiled forward pass) + # if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2: + # if model_inputs["inputs_embeds"] is not None: + # batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape + # device = model_inputs["inputs_embeds"].device + # else: + # batch_size, sequence_length = model_inputs[input_ids_key].shape + # device = model_inputs[input_ids_key].device + + # # Create the causal mask with fixed shape in advance, to reduce recompilations. If the function to create + # # the 4D causal mask exists, it should be present in the base model (XXXModel class). + # base_model = getattr(self, self.base_model_prefix, None) + # if base_model is None: + # causal_mask_creation_function = getattr( + # self, "_prepare_4d_causal_attention_mask_with_cache_position", None + # ) + # else: + # causal_mask_creation_function = getattr( + # base_model, "_prepare_4d_causal_attention_mask_with_cache_position", None + # ) + # if causal_mask_creation_function is None: + # logger.warning_once( + # f"{self.__class__.__name__} has no `_prepare_4d_causal_attention_mask_with_cache_position` method " + # "defined in its base modeling class. Compiled forward passes will be sub-optimal. If you're " + # "writing code, see Llama for an example implementation. If you're a user, please report this " + # "issue on GitHub." + # ) + # else: + # attention_mask = causal_mask_creation_function( + # attention_mask, + # sequence_length=sequence_length, + # target_length=past_key_values.get_max_cache_shape(), + # dtype=self.dtype, + # device=device, + # cache_position=cache_position, + # batch_size=batch_size, + # config=self.config, + # past_key_values=past_key_values, + # ) + # if attention_mask is not None: + # model_inputs["attention_mask"] = attention_mask + + # # 7. Forward ALL kwargs that are uninitialized (e.g. `use_cache`). + # for key, value in kwargs.items(): + # if key not in model_inputs: + # model_inputs[key] = value + + # # 8. Remove unexpected `generate` inputs (TODO @joao: fix trainer and examples) + # model_inputs.pop("labels", None) + # return model_inputs + + def __call__(self, *args, **kwargs): + return self.model(*args, **kwargs) + + def _prepare_model_inputs( + self, + inputs: Optional[torch.Tensor] = None, + bos_token_id: Optional[torch.Tensor] = None, + model_kwargs: Optional[Dict[str, torch.Tensor]] = None, + ) -> Tuple[torch.Tensor, Optional[str], Dict[str, torch.Tensor]]: + """ + This function extracts the model-specific `inputs` for generation. + """ + # 1. retrieve all kwargs that are non-None or non-model input related. + # some encoder-decoder models have different names for model and encoder + if ( + self.config.is_encoder_decoder + and hasattr(self, "encoder") + and self.encoder.main_input_name != self.main_input_name + ): + input_name = self.encoder.main_input_name + else: + input_name = self.main_input_name + + model_kwargs = {k: v for k, v in model_kwargs.items() if v is not None or k != input_name} + + # 2. check whether model_input_name is passed as kwarg + # if yes and `inputs` is None use kwarg inputs + inputs_kwarg = model_kwargs.pop(input_name, None) + if inputs_kwarg is not None and inputs is not None: + raise ValueError( + f"`inputs`: {inputs}` were passed alongside {input_name} which is not allowed. " + f"Make sure to either pass {inputs} or {input_name}=..." + ) + elif inputs_kwarg is not None: + inputs = inputs_kwarg + + # 3. In the presence of `inputs_embeds` for text models: + # - decoder-only models should complain if the user attempts to pass `inputs_embeds`, but the model + # doesn't have its forwarding implemented. `inputs_embeds` is kept in `model_kwargs` and can coexist with + # input_ids (`inputs_embeds` will be used in the 1st generation step, as opposed to `input_ids`) + # - encoder-decoder models should complain if the user attempts to pass `inputs_embeds` and `input_ids`, and + # pull the former to inputs. It will be used in place of `input_ids` to get the encoder hidden states. + if input_name == "input_ids" and "inputs_embeds" in model_kwargs: + if not self.config.is_encoder_decoder: + has_inputs_embeds_forwarding = "inputs_embeds" in set( + inspect.signature(self.prepare_inputs_for_generation).parameters.keys() + ) + if not has_inputs_embeds_forwarding: + raise ValueError( + f"You passed `inputs_embeds` to `.generate()`, but the model class {self.__class__.__name__} " + "doesn't have its forwarding implemented. See the GPT2 implementation for an example " + "(https://github.com/huggingface/transformers/pull/21405), and feel free to open a PR with it!" + ) + # In this case, `input_ids` is moved to the `model_kwargs`, so a few automations (like the creation of + # the attention mask) can rely on the actual model input. + model_kwargs["input_ids"] = self._maybe_initialize_input_ids_for_generation( + inputs, bos_token_id, model_kwargs=model_kwargs + ) + else: + if inputs is not None: + raise ValueError("You passed `inputs_embeds` and `input_ids` to `.generate()`. Please pick one.") + inputs, input_name = model_kwargs["inputs_embeds"], "inputs_embeds" + + # 4. if `inputs` is still None, try to create `input_ids` from BOS token + inputs = self._maybe_initialize_input_ids_for_generation(inputs, bos_token_id, model_kwargs) + return inputs, input_name, model_kwargs + + def _maybe_initialize_input_ids_for_generation( + self, + inputs: Optional[torch.Tensor] = None, + bos_token_id: Optional[torch.Tensor] = None, + model_kwargs: Optional[Dict[str, torch.Tensor]] = None, + ) -> torch.LongTensor: + """Initializes input ids for generation, if necessary.""" + if inputs is not None: + return inputs + + encoder_outputs = model_kwargs.get("encoder_outputs") + if self.config.is_encoder_decoder and encoder_outputs is not None: + # make dummy input_ids with value -100, as a sanity check ensuring that they won't be used for encoding + shape = encoder_outputs.last_hidden_state.size()[:-1] + return torch.ones(shape, dtype=torch.long, device=self.device) * -100 + + # If there is some tensor in `model_kwargs`, we can infer the batch size from it. This is helpful with + # soft-prompting or in multimodal implementations built on top of decoder-only language models. + batch_size = 1 + for value in model_kwargs.values(): + if isinstance(value, torch.Tensor): + batch_size = value.shape[0] + break + + if "inputs_embeds" in model_kwargs: + return torch.ones((batch_size, 0), dtype=torch.long, device=self.device) + + if bos_token_id is None: + raise ValueError("`bos_token_id` has to be defined when no `input_ids` are provided.") + + return torch.ones((batch_size, 1), dtype=torch.long, device=self.device) * bos_token_id + + def _prepare_attention_mask_for_generation( + self, + inputs_tensor: torch.Tensor, + generation_config: GenerationConfig, + model_kwargs: Dict[str, Any], + ) -> torch.LongTensor: + pad_token_id = generation_config._pad_token_tensor + eos_token_id = generation_config._eos_token_tensor + + # `input_ids` may be present in the model kwargs, instead of being the main input (e.g. multimodal model) + if "input_ids" in model_kwargs and model_kwargs["input_ids"].shape[1] > 0: + inputs_tensor = model_kwargs["input_ids"] + + # No information for attention mask inference -> return default attention mask + default_attention_mask = torch.ones(inputs_tensor.shape[:2], dtype=torch.long, device=inputs_tensor.device) + if pad_token_id is None: + return default_attention_mask + + is_input_ids = len(inputs_tensor.shape) == 2 and inputs_tensor.dtype in [torch.int, torch.long] + if not is_input_ids: + return default_attention_mask + + is_pad_token_in_inputs = (pad_token_id is not None) and ( + isin_mps_friendly(elements=inputs_tensor, test_elements=pad_token_id).any() + ) + is_pad_token_not_equal_to_eos_token_id = (eos_token_id is None) or ~( + isin_mps_friendly(elements=eos_token_id, test_elements=pad_token_id).any() + ) + can_infer_attention_mask = is_pad_token_in_inputs * is_pad_token_not_equal_to_eos_token_id + attention_mask_from_padding = inputs_tensor.ne(pad_token_id).long() + + attention_mask = ( + attention_mask_from_padding * can_infer_attention_mask + default_attention_mask * ~can_infer_attention_mask + ) + return attention_mask + + def _prepare_encoder_decoder_kwargs_for_generation( + self, + inputs_tensor: torch.Tensor, + model_kwargs, + model_input_name: Optional[str], + generation_config: GenerationConfig, + ) -> Dict[str, Any]: + # 1. get encoder + encoder = self.get_encoder() + # Compatibility with Accelerate big model inference: we need the encoder to outputs stuff on the same device + # as the inputs. + if hasattr(self, "hf_device_map"): + if hasattr(encoder, "_hf_hook"): + encoder._hf_hook.io_same_device = True + else: + add_hook_to_module(encoder, AlignDevicesHook(io_same_device=True)) + + # 2. Prepare encoder args and encoder kwargs from model kwargs and generation config. + irrelevant_prefix = ["decoder_", "cross_attn", "use_cache"] + encoder_kwargs = { + argument: value + for argument, value in model_kwargs.items() + if not any(argument.startswith(p) for p in irrelevant_prefix) + } + encoder_signature = set(inspect.signature(encoder.forward).parameters) + encoder_accepts_wildcard = "kwargs" in encoder_signature or "model_kwargs" in encoder_signature + if not encoder_accepts_wildcard: + encoder_kwargs = { + argument: value for argument, value in encoder_kwargs.items() if argument in encoder_signature + } + encoder_kwargs["output_attentions"] = generation_config.output_attentions + encoder_kwargs["output_hidden_states"] = generation_config.output_hidden_states + + # 3. make sure that encoder returns `ModelOutput` + model_input_name = model_input_name if model_input_name is not None else self.main_input_name + encoder_kwargs["return_dict"] = True + encoder_kwargs[model_input_name] = inputs_tensor + model_kwargs["encoder_outputs"]: ModelOutput = encoder(**encoder_kwargs) # type: ignore + + return model_kwargs + + def _prepare_decoder_input_ids_for_generation( + self, + batch_size: int, + model_input_name: str, + model_kwargs: Dict[str, torch.Tensor], + decoder_start_token_id: torch.Tensor, + device: torch.device = None, + ) -> Tuple[torch.LongTensor, Dict[str, torch.Tensor]]: + """Prepares `decoder_input_ids` for generation with encoder-decoder models""" + # 1. Check whether the user has defined `decoder_input_ids` manually. To facilitate in terms of input naming, + # we also allow the user to pass it under `input_ids`, if the encoder does not use it as the main input. + if model_kwargs is not None and "decoder_input_ids" in model_kwargs: + decoder_input_ids = model_kwargs.pop("decoder_input_ids") + elif "input_ids" in model_kwargs and model_input_name != "input_ids": + decoder_input_ids = model_kwargs.pop("input_ids") + else: + decoder_input_ids = None + + # 2. `decoder_start_token_id` must have shape (batch_size, 1) + if device is None: + device = self.device + if decoder_start_token_id.ndim == 1: + if decoder_start_token_id.shape[0] != batch_size: + raise ValueError( + f"`decoder_start_token_id` expected to have length {batch_size} but got {decoder_start_token_id.shape[0]}" + ) + decoder_start_token_id = decoder_start_token_id.view(-1, 1) + else: + decoder_start_token_id = ( + torch.ones((batch_size, 1), dtype=torch.long, device=device) * decoder_start_token_id + ) + + # 3. Encoder-decoder models expect the `decoder_input_ids` to start with a special token. Let's ensure that. + # no user input -> use decoder_start_token_id as decoder_input_ids + if decoder_input_ids is None: + decoder_input_ids = decoder_start_token_id + # exception: Donut checkpoints have task-specific decoder starts and don't expect a BOS token. Note that the + # original checkpoints can't be detected through `self.__class__.__name__.lower()`, needing custom logic. + # See: https://github.com/huggingface/transformers/pull/31470 + elif "donut" in self.__class__.__name__.lower() or ( + self.config.model_type == "vision-encoder-decoder" and "donut" in self.config.encoder.model_type.lower() + ): + pass + elif self.config.model_type in ["whisper"]: + pass + # user input but doesn't start with decoder_start_token_id -> prepend decoder_start_token_id (and adjust + # decoder_attention_mask if provided) + elif (decoder_input_ids[:, 0] != decoder_start_token_id[:, 0]).all().item(): + decoder_input_ids = torch.cat([decoder_start_token_id, decoder_input_ids], dim=-1) + if "decoder_attention_mask" in model_kwargs: + decoder_attention_mask = model_kwargs["decoder_attention_mask"] + decoder_attention_mask = torch.cat( + (torch.ones_like(decoder_attention_mask)[:, :1], decoder_attention_mask), + dim=-1, + ) + model_kwargs["decoder_attention_mask"] = decoder_attention_mask + + return decoder_input_ids, model_kwargs + + @staticmethod + def _expand_inputs_for_generation( + expand_size: int = 1, + is_encoder_decoder: bool = False, + input_ids: Optional[torch.LongTensor] = None, + **model_kwargs, + ) -> Tuple[torch.LongTensor, Dict[str, Any]]: + """Expands tensors from [batch_size, ...] to [batch_size * expand_size, ...]""" + # Do not call torch.repeat_interleave if expand_size is 1 because it clones + # the input tensor and thus requires more memory although no change is applied + if expand_size == 1: + return input_ids, model_kwargs + + def _expand_dict_for_generation(dict_to_expand): + for key in dict_to_expand: + if ( + key != "cache_position" + and dict_to_expand[key] is not None + and isinstance(dict_to_expand[key], torch.Tensor) + ): + dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0) + return dict_to_expand + + if input_ids is not None: + input_ids = input_ids.repeat_interleave(expand_size, dim=0) + + model_kwargs = _expand_dict_for_generation(model_kwargs) + + if is_encoder_decoder: + if model_kwargs.get("encoder_outputs") is None: + raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.") + model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"]) + + return input_ids, model_kwargs + + def _extract_past_from_model_output(self, outputs: ModelOutput): + past_key_values = None + cache_name = "past_key_values" + if "past_key_values" in outputs: + past_key_values = outputs.past_key_values + elif "mems" in outputs: + past_key_values = outputs.mems + elif "past_buckets_states" in outputs: + past_key_values = outputs.past_buckets_states + elif "cache_params" in outputs: + past_key_values = outputs.cache_params + cache_name = "cache_params" + + return cache_name, past_key_values + + def _update_model_kwargs_for_generation( + self, + outputs: ModelOutput, + model_kwargs: Dict[str, Any], + is_encoder_decoder: bool = False, + num_new_tokens: int = 1, + ) -> Dict[str, Any]: + # update past_key_values keeping its naming used in model code + # cache_name, cache = self._extract_past_from_model_output(outputs) + # model_kwargs[cache_name] = cache + if hasattr(self.model, "_update_model_kwargs_for_generation"): + return self.model._update_model_kwargs_for_generation(outputs, model_kwargs, is_encoder_decoder) + model_kwargs["past_key_values"] = self._extract_past_from_model_output(outputs) + + if getattr(outputs, "state", None) is not None: + model_kwargs["state"] = outputs.state + + # update token_type_ids with last value + if "token_type_ids" in model_kwargs: + token_type_ids = model_kwargs["token_type_ids"] + model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1) + + if not is_encoder_decoder: + # update attention mask + if "attention_mask" in model_kwargs: + attention_mask = model_kwargs["attention_mask"] + model_kwargs["attention_mask"] = torch.cat( + [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1 + ) + else: + # update decoder attention mask + if "decoder_attention_mask" in model_kwargs: + decoder_attention_mask = model_kwargs["decoder_attention_mask"] + model_kwargs["decoder_attention_mask"] = torch.cat( + [decoder_attention_mask, decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], 1))], + dim=-1, + ) + + if model_kwargs.get("use_cache", True): + model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + num_new_tokens + else: + past_positions = model_kwargs.pop("cache_position") + new_positions = torch.arange( + past_positions[-1] + 1, past_positions[-1] + num_new_tokens + 1, dtype=past_positions.dtype + ).to(past_positions.device) + model_kwargs["cache_position"] = torch.cat((past_positions, new_positions)) + return model_kwargs + + def _reorder_cache(self, past_key_values, beam_idx): + # raise NotImplementedError( + # f"Make sure that a `_reorder_cache` function is correctly implemented in {self.__class__.__module__} to" + # f" enable beam search for {self.__class__}" + # ) + return self.model._reorder_cache(past_key_values, beam_idx) + + def _get_candidate_generator( + self, + generation_config: GenerationConfig, + input_ids: torch.LongTensor, + inputs_tensor: torch.Tensor, + assistant_model: "PreTrainedModel", + logits_processor: LogitsProcessorList, + target_tokenizer: "PreTrainedTokenizerBase", + assistant_tokenizer: "PreTrainedTokenizerBase", + model_kwargs: Dict, + ) -> CandidateGenerator: + """ + Returns the candidate generator to be used in `assisted_generation` + """ + different_tokenizers = all(v is not None for v in (assistant_model, target_tokenizer, assistant_tokenizer)) + + if generation_config.assistant_early_exit is not None: + candidate_generator = EarlyExitCandidateGenerator( + input_ids=input_ids, + assistant_model=self, + generation_config=generation_config, + model_kwargs=model_kwargs, + inputs_tensor=inputs_tensor, + logits_processor=logits_processor, + ) + elif generation_config.prompt_lookup_num_tokens is not None: + candidate_generator = PromptLookupCandidateGenerator( + eos_token_id=generation_config._eos_token_tensor, + num_output_tokens=generation_config.prompt_lookup_num_tokens, + max_matching_ngram_size=generation_config.max_matching_ngram_size, + max_length=generation_config.max_length, + ) + elif different_tokenizers: + candidate_generator = AssistedCandidateGeneratorDifferentTokenizers( + input_ids=input_ids, + assistant_model=assistant_model, + generation_config=generation_config, + model_kwargs=model_kwargs, + inputs_tensor=inputs_tensor, + logits_processor=logits_processor, + target_tokenizer=target_tokenizer, + assistant_tokenizer=assistant_tokenizer, + ) + else: + candidate_generator = AssistedCandidateGenerator( + input_ids=input_ids, + assistant_model=assistant_model, + generation_config=generation_config, + model_kwargs=model_kwargs, + inputs_tensor=inputs_tensor, + logits_processor=logits_processor, + ) + return candidate_generator + + def _get_logits_processor( + self, + generation_config: GenerationConfig, + input_ids_seq_length: int, + encoder_input_ids: torch.LongTensor, + prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]], + logits_processor: Optional[LogitsProcessorList], + device: str = None, + model_kwargs: Optional[Dict[str, Any]] = None, + negative_prompt_ids: Optional[torch.Tensor] = None, + negative_prompt_attention_mask: Optional[torch.Tensor] = None, + ) -> LogitsProcessorList: + """ + This class returns a [`LogitsProcessorList`] list object that contains all relevant [`LogitsProcessor`] + instances used to modify the scores of the language model head. + """ + # instantiate processors list + processors = LogitsProcessorList() + + if generation_config.guidance_scale is not None and generation_config.guidance_scale != 1: + processors.append( + UnbatchedClassifierFreeGuidanceLogitsProcessor( + generation_config.guidance_scale, + self, + unconditional_ids=negative_prompt_ids, + unconditional_attention_mask=negative_prompt_attention_mask, + use_cache=generation_config.use_cache, + ) + ) + if generation_config.sequence_bias is not None: + processors.append(SequenceBiasLogitsProcessor(sequence_bias=generation_config.sequence_bias)) + + if generation_config.diversity_penalty is not None and generation_config.diversity_penalty > 0.0: + processors.append( + HammingDiversityLogitsProcessor( + diversity_penalty=generation_config.diversity_penalty, + num_beams=generation_config.num_beams, + num_beam_groups=generation_config.num_beam_groups, + ) + ) + if ( + generation_config.encoder_repetition_penalty is not None + and generation_config.encoder_repetition_penalty != 1.0 + ): + if len(encoder_input_ids.shape) == 2: + processors.append( + EncoderRepetitionPenaltyLogitsProcessor( + penalty=generation_config.encoder_repetition_penalty, + encoder_input_ids=encoder_input_ids, + ) + ) + else: + warnings.warn( + "Passing `encoder_repetition_penalty` requires some form of `input_ids` to be passed to " + "`generate`, ignoring the argument.", + UserWarning, + ) + if generation_config.repetition_penalty is not None and generation_config.repetition_penalty != 1.0: + processors.append(RepetitionPenaltyLogitsProcessor(penalty=generation_config.repetition_penalty)) + if generation_config.no_repeat_ngram_size is not None and generation_config.no_repeat_ngram_size > 0: + processors.append(NoRepeatNGramLogitsProcessor(generation_config.no_repeat_ngram_size)) + if ( + generation_config.encoder_no_repeat_ngram_size is not None + and generation_config.encoder_no_repeat_ngram_size > 0 + ): + if len(encoder_input_ids.shape) == 2: + processors.append( + EncoderNoRepeatNGramLogitsProcessor( + generation_config.encoder_no_repeat_ngram_size, + encoder_input_ids, + ) + ) + else: + warnings.warn( + "Passing `encoder_no_repeat_ngram_size` requires some form of `input_ids` to be passed to " + "`generate`, ignoring the argument.", + UserWarning, + ) + if generation_config.bad_words_ids is not None: + processors.append( + NoBadWordsLogitsProcessor( + generation_config.bad_words_ids, + generation_config._eos_token_tensor, + ) + ) + if ( + generation_config.min_length is not None + and generation_config._eos_token_tensor is not None + and generation_config.min_length > 0 + ): + processors.append( + MinLengthLogitsProcessor( + generation_config.min_length, + generation_config._eos_token_tensor, + device=device, + ) + ) + if ( + generation_config.min_new_tokens is not None + and generation_config._eos_token_tensor is not None + and generation_config.min_new_tokens > 0 + ): + processors.append( + MinNewTokensLengthLogitsProcessor( + input_ids_seq_length, + generation_config.min_new_tokens, + generation_config._eos_token_tensor, + device=device, + ) + ) + if prefix_allowed_tokens_fn is not None: + processors.append( + PrefixConstrainedLogitsProcessor( + prefix_allowed_tokens_fn, + generation_config.num_beams // generation_config.num_beam_groups, + ) + ) + if generation_config.forced_bos_token_id is not None: + processors.append( + ForcedBOSTokenLogitsProcessor( + generation_config.forced_bos_token_id, + ) + ) + if generation_config.forced_eos_token_id is not None: + processors.append( + ForcedEOSTokenLogitsProcessor( + generation_config.max_length, + generation_config.forced_eos_token_id, + device=device, + ) + ) + if generation_config.remove_invalid_values is True: + processors.append(InfNanRemoveLogitsProcessor()) + if generation_config.exponential_decay_length_penalty is not None: + processors.append( + ExponentialDecayLengthPenalty( + generation_config.exponential_decay_length_penalty, + generation_config._eos_token_tensor, + input_ids_seq_length, + ) + ) + if generation_config.suppress_tokens is not None: + processors.append( + SuppressTokensLogitsProcessor( + generation_config.suppress_tokens, + device=device, + ) + ) + if generation_config.begin_suppress_tokens is not None: + begin_index = input_ids_seq_length + begin_index = ( + begin_index + if (input_ids_seq_length > 1 or generation_config.forced_bos_token_id is None) + else begin_index + 1 + ) + processors.append( + SuppressTokensAtBeginLogitsProcessor( + generation_config.begin_suppress_tokens, + begin_index, + device=device, + ) + ) + if generation_config.forced_decoder_ids is not None: + # TODO (sanchit): move this exception to GenerationConfig.validate() when TF & FLAX are aligned with PT + raise ValueError( + "You have explicitly specified `forced_decoder_ids`. Please remove the `forced_decoder_ids` argument " + "in favour of `input_ids` or `decoder_input_ids` respectively.", + ) + + # TODO (joao): find a strategy to specify the order of the processors + processors = self._merge_criteria_processor_list(processors, logits_processor) + + # Processors previously known as `LogitsWarpers`, only applied with sampling strategies + if generation_config.do_sample: + # In beam methods, we need to keep at least one non-eos token to explore continuations that might have a + # better score (i.e. keep len(list(generation_config._eos_token_tensor)) + 1) + if generation_config.num_beams > 1: + if isinstance(generation_config._eos_token_tensor, list): + min_tokens_to_keep = len(generation_config._eos_token_tensor) + 1 + elif isinstance(generation_config._eos_token_tensor, torch.Tensor): + min_tokens_to_keep = generation_config._eos_token_tensor.shape[0] + 1 + else: + min_tokens_to_keep = 2 + else: + min_tokens_to_keep = 1 + + # the following idea is largely copied from this PR: https://github.com/huggingface/transformers/pull/5420/files + # all samplers can be found in `generation_utils_samplers.py` + if generation_config.temperature is not None and generation_config.temperature != 1.0: + processors.append(TemperatureLogitsWarper(generation_config.temperature)) + if generation_config.top_k is not None and generation_config.top_k != 0: + processors.append( + TopKLogitsWarper(top_k=generation_config.top_k, min_tokens_to_keep=min_tokens_to_keep) + ) + if generation_config.top_p is not None and generation_config.top_p < 1.0: + processors.append( + TopPLogitsWarper(top_p=generation_config.top_p, min_tokens_to_keep=min_tokens_to_keep) + ) + if generation_config.min_p is not None: + # Applied after temperature scaling (see https://github.com/ggerganov/llama.cpp/pull/3841#issuecomment-2073826084) + processors.append( + MinPLogitsWarper(min_p=generation_config.min_p, min_tokens_to_keep=min_tokens_to_keep) + ) + if generation_config.typical_p is not None and generation_config.typical_p < 1.0: + processors.append( + TypicalLogitsWarper(mass=generation_config.typical_p, min_tokens_to_keep=min_tokens_to_keep) + ) + if generation_config.epsilon_cutoff is not None and 0.0 < generation_config.epsilon_cutoff < 1.0: + processors.append( + EpsilonLogitsWarper( + epsilon=generation_config.epsilon_cutoff, min_tokens_to_keep=min_tokens_to_keep + ) + ) + if generation_config.eta_cutoff is not None and 0.0 < generation_config.eta_cutoff < 1.0: + processors.append( + EtaLogitsWarper( + epsilon=generation_config.eta_cutoff, min_tokens_to_keep=min_tokens_to_keep, device=device + ) + ) + + # Watermarking should be after all logits processing is finished (see #34630) + if generation_config.watermarking_config is not None: + processors.append( + generation_config.watermarking_config.construct_processor(self.config.vocab_size, device) + ) + + # `LogitNormalization` should always be the last logit processor, when present + if generation_config.renormalize_logits is True: + processors.append(LogitNormalization()) + return processors + + def _get_stopping_criteria( + self, + generation_config: GenerationConfig, + stopping_criteria: Optional[StoppingCriteriaList], + tokenizer: Optional["PreTrainedTokenizerBase"] = None, + **kwargs, + ) -> StoppingCriteriaList: + criteria = StoppingCriteriaList() + if generation_config.max_length is not None: + max_position_embeddings = getattr(self.config, "max_position_embeddings", None) + criteria.append( + MaxLengthCriteria( + max_length=generation_config.max_length, + max_position_embeddings=max_position_embeddings, + ) + ) + if generation_config.max_time is not None: + criteria.append(MaxTimeCriteria(max_time=generation_config.max_time)) + if generation_config.stop_strings is not None: + if tokenizer is None: + raise ValueError( + "There are one or more stop strings, either in the arguments to `generate` or in the " + "model's generation config, but we could not locate a tokenizer. When generating with " + "stop strings, you must pass the model's tokenizer to the `tokenizer` argument of `generate`." + ) + criteria.append(StopStringCriteria(stop_strings=generation_config.stop_strings, tokenizer=tokenizer)) + if generation_config._eos_token_tensor is not None: + criteria.append(EosTokenCriteria(eos_token_id=generation_config._eos_token_tensor)) + if ( + generation_config.is_assistant + and generation_config.assistant_confidence_threshold is not None + and generation_config.assistant_confidence_threshold > 0 + ): + criteria.append( + ConfidenceCriteria(assistant_confidence_threshold=generation_config.assistant_confidence_threshold) + ) + criteria = self._merge_criteria_processor_list(criteria, stopping_criteria) + return criteria + + def _merge_criteria_processor_list( + self, + default_list: Union[LogitsProcessorList, StoppingCriteriaList], + custom_list: Union[LogitsProcessorList, StoppingCriteriaList], + ) -> Union[LogitsProcessorList, StoppingCriteriaList]: + if len(custom_list) == 0: + return default_list + for default in default_list: + for custom in custom_list: + if type(custom) is type(default): + object_type = "stopping criteria" if isinstance(custom, StoppingCriteria) else "logits processor" + raise ValueError( + f"A custom {object_type} of type {type(custom)} with values {custom} has been passed to" + f" `.generate()`, but it has already been created with the values {default}. {default} has been" + " created by passing the corresponding arguments to generate or by the model's config default" + f" values. If you just want to change the default values of {object_type} consider passing" + f" them as arguments to `.generate()` instead of using a custom {object_type}." + ) + default_list.extend(custom_list) + return default_list + + def compute_transition_scores( + self, + sequences: torch.Tensor, + scores: Tuple[torch.Tensor], + beam_indices: Optional[torch.Tensor] = None, + normalize_logits: bool = False, + ) -> torch.Tensor: + """ + Computes the transition scores of sequences given the generation scores (and beam indices, if beam search was + used). This is a convenient method to quicky obtain the scores of the selected tokens at generation time. + + Parameters: + sequences (`torch.LongTensor`): + The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or + shorter if all batches finished early due to the `eos_token_id`. + scores (`tuple(torch.FloatTensor)`): + Transition scores for each vocabulary token at each generation step. Beam transition scores consisting + of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam. + Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token), + with each tensor of shape `(batch_size*num_beams, config.vocab_size)`. + beam_indices (`torch.LongTensor`, *optional*): + Beam indices of generated token id at each generation step. `torch.LongTensor` of shape + `(batch_size*num_return_sequences, sequence_length)`. Only required if a `num_beams>1` at + generate-time. + normalize_logits (`bool`, *optional*, defaults to `False`): + Whether to normalize the logits (which, for legacy reasons, may be unnormalized). + + Return: + `torch.Tensor`: A `torch.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)` containing + the transition scores (logits) + + Examples: + + ```python + >>> from transformers import GPT2Tokenizer, AutoModelForCausalLM + >>> import numpy as np + + >>> tokenizer = GPT2Tokenizer.from_pretrained("gpt2") + >>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2") + >>> tokenizer.pad_token_id = tokenizer.eos_token_id + >>> inputs = tokenizer(["Today is"], return_tensors="pt") + + >>> # Example 1: Print the scores for each token generated with Greedy Search + >>> outputs = model.generate(**inputs, max_new_tokens=5, return_dict_in_generate=True, output_scores=True) + >>> transition_scores = model.compute_transition_scores( + ... outputs.sequences, outputs.scores, normalize_logits=True + ... ) + >>> # input_length is the length of the input prompt for decoder-only models, like the GPT family, and 1 for + >>> # encoder-decoder models, like BART or T5. + >>> input_length = 1 if model.config.is_encoder_decoder else inputs.input_ids.shape[1] + >>> generated_tokens = outputs.sequences[:, input_length:] + >>> for tok, score in zip(generated_tokens[0], transition_scores[0]): + ... # | token | token string | log probability | probability + ... print(f"| {tok:5d} | {tokenizer.decode(tok):8s} | {score.numpy():.3f} | {np.exp(score.numpy()):.2%}") + | 262 | the | -1.414 | 24.33% + | 1110 | day | -2.609 | 7.36% + | 618 | when | -2.010 | 13.40% + | 356 | we | -1.859 | 15.58% + | 460 | can | -2.508 | 8.14% + + >>> # Example 2: Reconstruct the sequence scores from Beam Search + >>> outputs = model.generate( + ... **inputs, + ... max_new_tokens=5, + ... num_beams=4, + ... num_return_sequences=4, + ... return_dict_in_generate=True, + ... output_scores=True, + ... ) + >>> transition_scores = model.compute_transition_scores( + ... outputs.sequences, outputs.scores, outputs.beam_indices, normalize_logits=False + ... ) + >>> # If you sum the generated tokens' scores and apply the length penalty, you'll get the sequence scores. + >>> # Tip 1: recomputing the scores is only guaranteed to match with `normalize_logits=False`. Depending on the + >>> # use case, you might want to recompute it with `normalize_logits=True`. + >>> # Tip 2: the output length does NOT include the input length + >>> output_length = np.sum(transition_scores.numpy() < 0, axis=1) + >>> length_penalty = model.generation_config.length_penalty + >>> reconstructed_scores = transition_scores.sum(axis=1) / (output_length**length_penalty) + >>> print(np.allclose(outputs.sequences_scores, reconstructed_scores)) + True + ```""" + # 1. In absence of `beam_indices`, we can assume that we come from e.g. greedy search, which is equivalent + # to a beam search approach were the first (and only) beam is always selected + if beam_indices is None: + beam_indices = torch.arange(scores[0].shape[0]).view(-1, 1).to(sequences.device) + beam_indices = beam_indices.expand(-1, len(scores)) + + # 2. reshape scores as [batch_size*vocab_size, # generation steps] with # generation steps being + # seq_len - input_length + scores = torch.stack(scores).reshape(len(scores), -1).transpose(0, 1) + + # 3. Optionally normalize the logits (across the vocab dimension) + if normalize_logits: + scores = scores.reshape(-1, self.config.vocab_size, scores.shape[-1]) + scores = torch.nn.functional.log_softmax(scores, dim=1) + scores = scores.reshape(-1, scores.shape[-1]) + + # 4. cut beam_indices to longest beam length + beam_indices_mask = beam_indices < 0 + max_beam_length = (1 - beam_indices_mask.long()).sum(-1).max() + beam_indices = beam_indices.clone()[:, :max_beam_length] + beam_indices_mask = beam_indices_mask[:, :max_beam_length] + + # 5. Set indices of beams that finished early to 0; such indices will be masked correctly afterwards + beam_indices[beam_indices_mask] = 0 + + # 6. multiply beam_indices with vocab size to gather correctly from scores + beam_sequence_indices = beam_indices * self.config.vocab_size + + # 7. Define which indices contributed to scores + cut_idx = sequences.shape[-1] - max_beam_length + indices = sequences[:, cut_idx:] + beam_sequence_indices + + # 8. Compute scores + transition_scores = scores.gather(0, indices) + + # 9. Mask out transition_scores of beams that stopped early + transition_scores[beam_indices_mask] = 0 + + return transition_scores + + def _validate_model_class(self): + """ + Confirms that the model class is compatible with generation. If not, raises an exception that points to the + right class to use. + """ + # TODO(joao): remove this function in v4.50, i.e. when we remove the inheritance of `GenerationMixin` from + # `PreTrainedModel`. With that inheritance removed, all model classes inheriting from `GenerationMixin` can + # safely call `GenerationMixin.generate` + if not is_torchdynamo_compiling() and not self.can_generate(): + terminations_with_generation_support = [ + "ForCausalLM", + "ForConditionalGeneration", + "ForSpeechSeq2Seq", + "ForVision2Seq", + ] + raise TypeError( + f"The current model class ({self.__class__.__name__}) is not compatible with `.generate()`, as " + "it doesn't have a language model head. Classes that support generation often end in one of these " + f"names: {terminations_with_generation_support}." + ) + + def _validate_assistant(self, assistant_model, tokenizer, assistant_tokenizer): + if assistant_model is None: + return + + if self.config.is_encoder_decoder and not assistant_model.config.is_encoder_decoder: + attributes_to_check = ["encoder_attention_heads", "encoder_ffn_dim", "encoder_layers"] + attributes_to_check = [attr for attr in dir(assistant_model.config) if attr in attributes_to_check] + are_equal = all( + getattr(self.config, attr) == getattr(assistant_model.config, attr) for attr in attributes_to_check + ) + if not are_equal: + raise ValueError( + "The main model and the assistant don't have compatible encoder-dependent input shapes. " + "Ensure you load the assistant with the correct encoder-decoder class, e.g. `AutoModelForSpeechSeq2Seq` for Whisper." + ) + + doc_reference = ( + "(see https://huggingface.co/docs/transformers/en/generation_strategies#universal-assisted-decoding)" + ) + if self.config.get_text_config().vocab_size == assistant_model.config.get_text_config().vocab_size: + if assistant_tokenizer is not None: + raise ValueError( + f"`assistant_tokenizer` is not required when the main and assistant models use the same tokenizer. Please omit `assistant_tokenizer` from `generate()` {doc_reference}." + ) + else: + if tokenizer is None or assistant_tokenizer is None: + raise ValueError( + f"The main and assistant moedels have different tokenizers. Please provide `tokenizer` and `assistant_tokenizer` to `generate()` {doc_reference}." + ) + + def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]): + """Validates model kwargs for generation. Generate argument typos will also be caught here.""" + # If a `Cache` instance is passed, checks whether the model is compatible with it + if isinstance(model_kwargs.get("past_key_values", None), Cache) and not self._supports_cache_class: + raise ValueError( + f"{self.__class__.__name__} does not support an instance of `Cache` as `past_key_values`. Please " + "check the model documentation for supported cache formats." + ) + + # Excludes arguments that are handled before calling any model function + if self.config.is_encoder_decoder: + for key in ["decoder_input_ids"]: + model_kwargs.pop(key, None) + + unused_model_args = [] + model_args = set(inspect.signature(self.prepare_inputs_for_generation).parameters) + # `kwargs`/`model_kwargs` is often used to handle optional forward pass inputs like `attention_mask`. If + # `prepare_inputs_for_generation` doesn't accept them, then a stricter check can be made ;) + if "kwargs" in model_args or "model_kwargs" in model_args: + model_args |= set(inspect.signature(self.forward).parameters) + + # Encoder-Decoder models may also need Encoder arguments from `model_kwargs` + if self.config.is_encoder_decoder: + base_model = getattr(self, self.base_model_prefix, None) + + # allow encoder kwargs + encoder = getattr(self, "encoder", None) + # `MusicgenForConditionalGeneration` has `text_encoder` and `audio_encoder`. + # Also, it has `base_model_prefix = "encoder_decoder"` but there is no `self.encoder_decoder` + # TODO: A better way to handle this. + if encoder is None and base_model is not None: + encoder = getattr(base_model, "encoder", None) + + if encoder is not None: + encoder_model_args = set(inspect.signature(encoder.forward).parameters) + model_args |= encoder_model_args + + # allow decoder kwargs + decoder = getattr(self, "decoder", None) + if decoder is None and base_model is not None: + decoder = getattr(base_model, "decoder", None) + + if decoder is not None: + decoder_model_args = set(inspect.signature(decoder.forward).parameters) + model_args |= {f"decoder_{x}" for x in decoder_model_args} + + # allow assistant_encoder_outputs to be passed if we're doing assisted generating + if "assistant_encoder_outputs" in model_kwargs: + model_args |= {"assistant_encoder_outputs"} + + for key, value in model_kwargs.items(): + if value is not None and key not in model_args: + unused_model_args.append(key) + + if unused_model_args: + raise ValueError( + f"The following `model_kwargs` are not used by the model: {unused_model_args} (note: typos in the" + " generate arguments will also show up in this list)" + ) + + def _validate_generated_length(self, generation_config, input_ids_length, has_default_max_length): + """Performs validation related to the resulting generated length""" + + # Can't throw warnings/exceptions during compilation + if is_torchdynamo_compiling(): + return + + # 1. Max length warnings related to poor parameterization + if has_default_max_length and generation_config.max_new_tokens is None and generation_config.max_length == 20: + # 20 is the default max_length of the generation config + warnings.warn( + f"Using the model-agnostic default `max_length` (={generation_config.max_length}) to control the " + "generation length. We recommend setting `max_new_tokens` to control the maximum length of the " + "generation.", + UserWarning, + ) + if input_ids_length >= generation_config.max_length: + input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids" + raise ValueError( + f"Input length of {input_ids_string} is {input_ids_length}, but `max_length` is set to" + f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider" + " increasing `max_length` or, better yet, setting `max_new_tokens`." + ) + + # 2. Min length warnings due to unfeasible parameter combinations + min_length_error_suffix = ( + " Generation will stop at the defined maximum length. You should decrease the minimum length and/or " + "increase the maximum length." + ) + if has_default_max_length: + min_length_error_suffix += ( + f" Note that `max_length` is set to {generation_config.max_length}, its default value." + ) + if generation_config.min_length is not None and generation_config.min_length > generation_config.max_length: + warnings.warn( + f"Unfeasible length constraints: `min_length` ({generation_config.min_length}) is larger than" + f" the maximum possible length ({generation_config.max_length})." + min_length_error_suffix, + UserWarning, + ) + if generation_config.min_new_tokens is not None: + min_length = generation_config.min_new_tokens + input_ids_length + if min_length > generation_config.max_length: + warnings.warn( + f"Unfeasible length constraints: `min_new_tokens` ({generation_config.min_new_tokens}), when " + f"added to the prompt length ({input_ids_length}), is larger than" + f" the maximum possible length ({generation_config.max_length})." + min_length_error_suffix, + UserWarning, + ) + + def _prepare_generated_length( + self, + generation_config, + has_default_max_length, + has_default_min_length, + model_input_name, + input_ids_length, + inputs_tensor, + ): + """Prepared max and min length in generation configs to avoid clashes between similar attributes""" + + if generation_config.max_new_tokens is not None: + if not has_default_max_length and generation_config.max_length is not None: + logger.warning( + f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(=" + f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. " + "Please refer to the documentation for more information. " + "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)" + ) + generation_config.max_length = generation_config.max_new_tokens + input_ids_length + + # if both `inputs_embeds` and `input_ids` are passed, we do not correct the length + # otherwise we need total length [inputs-embeds-len + new-tokens-len] to not go beyond indicated `max_length`` + elif ( + model_input_name == "inputs_embeds" + and input_ids_length != inputs_tensor.shape[1] + and not self.config.is_encoder_decoder + ): + generation_config.max_length -= inputs_tensor.shape[1] + elif has_default_max_length: # by default let's always generate 20 new tokens + if generation_config.max_length == GenerationConfig().max_length: + generation_config.max_length = generation_config.max_length + input_ids_length + max_position_embeddings = getattr(self.config, "max_position_embeddings", None) + if max_position_embeddings is not None: + generation_config.max_length = min(generation_config.max_length, max_position_embeddings) + + # same for min length + if generation_config.min_new_tokens is not None: + if not has_default_min_length: + logger.warning( + f"Both `min_new_tokens` (={generation_config.min_new_tokens}) and `min_length`(=" + f"{generation_config.min_length}) seem to have been set. `min_new_tokens` will take precedence. " + "Please refer to the documentation for more information. " + "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)" + ) + generation_config.min_length = generation_config.min_new_tokens + input_ids_length + + elif ( + model_input_name == "inputs_embeds" + and input_ids_length != inputs_tensor.shape[1] + and not self.config.is_encoder_decoder + ): + generation_config.min_length = max(generation_config.min_length - inputs_tensor.shape[1], 0) + + return generation_config + + def _prepare_generation_config( + self, generation_config: Optional[GenerationConfig], **kwargs: Dict + ) -> Tuple[GenerationConfig, Dict]: + """ + Prepares the base generation config, then applies any generation configuration options from kwargs. This + function handles retrocompatibility with respect to configuration files. + """ + # TODO joao: when we can detect `fullgraph=True` in `torch.compile` (https://github.com/pytorch/pytorch/pull/120400) + # replace `is_torchdynamo_compiling` by the corresponding check. As it is, we are being too restrictive with + # the parameterization in `fullgraph=False` so as to enable `fullgraph=True`. + + # priority: `generation_config` argument > `model.generation_config` (the default generation config) + using_model_generation_config = False + if generation_config is None: + # legacy: users may modify the model configuration to control generation. To trigger this legacy behavior, + # the following conditions must be met + # 1) the generation config must have been created from the model config (`_from_model_config` field); + # 2) the generation config must have seen no modification since its creation (the hash is the same); + # 3) there are non-default generation parameters in the model config. + # 4) the user must have set new generation parameters in the model config. + # NOTE: `torch.compile` can't compile `hash`, this legacy support is disabled with compilation. + if ( + not is_torchdynamo_compiling() + and self.generation_config._from_model_config # 1) + and self.generation_config._original_object_hash == hash(self.generation_config) # 2) + and len(self.config._get_non_default_generation_parameters()) > 0 # 3) + ): + new_generation_config = GenerationConfig.from_model_config(self.config) + if new_generation_config != self.generation_config: # 4) + warnings.warn( + "You have modified the pretrained model configuration to control generation. This is a" + " deprecated strategy to control generation and will be removed in v5." + " Please use and modify the model generation configuration (see" + " https://huggingface.co/docs/transformers/generation_strategies#default-text-generation-configuration )", + UserWarning, + ) + self.generation_config = new_generation_config + + generation_config = self.generation_config + using_model_generation_config = True + + # `torch.compile` can't compile `copy.deepcopy`, arguments in `kwargs` that are part of `generation_config` + # will mutate the object with `.update`. As such, passing these arguments through `kwargs` is disabled -- an + # exception will be raised in `_validate_model_kwargs` + if not is_torchdynamo_compiling(): + generation_config = copy.deepcopy(generation_config) + model_kwargs = generation_config.update(**kwargs) + # If `generation_config` is provided, let's fallback ALL special tokens to the default values for the model + if not using_model_generation_config: + if generation_config.bos_token_id is None: + generation_config.bos_token_id = self.generation_config.bos_token_id + if generation_config.eos_token_id is None: + generation_config.eos_token_id = self.generation_config.eos_token_id + if generation_config.pad_token_id is None: + generation_config.pad_token_id = self.generation_config.pad_token_id + if generation_config.decoder_start_token_id is None: + generation_config.decoder_start_token_id = self.generation_config.decoder_start_token_id + else: + model_kwargs = kwargs + + return generation_config, model_kwargs + + def _get_initial_cache_position(self, input_ids, model_kwargs): + """Calculates `cache_position` for the pre-fill stage based on `input_ids` and optionally past length""" + # `torch.compile`-friendly `torch.arange` from a shape -- the lines below are equivalent to `torch.arange` + if "inputs_embeds" in model_kwargs and not self.config.is_encoder_decoder: + cache_position = torch.ones_like(model_kwargs["inputs_embeds"][0, :, 0], dtype=torch.int64).cumsum(0) - 1 + elif "decoder_inputs_embeds" in model_kwargs and self.config.is_encoder_decoder: + cache_position = ( + torch.ones_like(model_kwargs["decoder_inputs_embeds"][0, :, 0], dtype=torch.int64).cumsum(0) - 1 + ) + else: + cache_position = torch.ones_like(input_ids[0, :], dtype=torch.int64).cumsum(0) - 1 + + past_length = 0 + if model_kwargs.get("past_key_values") is not None: + cache = model_kwargs["past_key_values"] + past_length = 0 + if not isinstance(cache, Cache): + past_length = cache[0][0].shape[2] + elif hasattr(cache, "get_seq_length") and cache.get_seq_length() is not None: + past_length = cache.get_seq_length() + + # TODO(joao): this is not torch.compile-friendly, find a work-around. If the cache is not empty, + # end-to-end compilation will yield bad results because `cache_position` will be incorrect. + if not is_torchdynamo_compiling(): + cache_position = cache_position[past_length:] + + model_kwargs["cache_position"] = cache_position + return model_kwargs + + def _get_cache( + self, cache_implementation: str, batch_size: int, max_cache_len: int, device: torch.device, model_kwargs + ) -> Cache: + """ + Sets a cache for `generate`, that will persist across calls. A new cache will only be initialized a + new `generate` call requires a larger cache or uses a different batch size. + + Returns the resulting cache object. + """ + cache_cls: Cache = NEED_SETUP_CACHE_CLASSES_MAPPING[cache_implementation] + requires_cross_attention_cache = ( + self.config.is_encoder_decoder or model_kwargs.get("encoder_outputs") is not None + ) + + if hasattr(self, "_cache"): + cache_to_check = self._cache.self_attention_cache if requires_cross_attention_cache else self._cache + + if cache_implementation == "sliding_window": + max_cache_len = min(self.config.sliding_window, max_cache_len) + + need_new_cache = ( + not hasattr(self, "_cache") + or (not isinstance(cache_to_check, cache_cls)) + or cache_to_check.max_batch_size != batch_size + ) + if cache_implementation != "mamba": + need_new_cache = need_new_cache or cache_to_check.max_cache_len < max_cache_len + + if requires_cross_attention_cache and hasattr(self, "_cache"): + need_new_cache = ( + need_new_cache + or self._cache.cross_attention_cache.max_cache_len != model_kwargs["encoder_outputs"][0].shape[1] + ) + + if need_new_cache: + if hasattr(self.config, "_pre_quantization_dtype"): + cache_dtype = self.config._pre_quantization_dtype + else: + if not is_torchdynamo_compiling(): + cache_dtype = self.dtype + else: + # NOTE: self.dtype is not compatible with torch.compile, as it calls `self.parameters()`. + # Workaround: trust the lm_head, whose attribute name is somewhat consistent across generative + # models. May cause trobles with non-text modalities. + cache_dtype = self.get_output_embeddings().weight.dtype + + def get_layer_device_map(execution_device_map: Optional[dict] = None): + if execution_device_map is None: + return None + elif len(execution_device_map) == 1 and "" in execution_device_map: + return {idx: execution_device_map[""] for idx in range(self.config.num_hidden_layers)} + layer_device_map = {} + for layer in execution_device_map: + for idx in range(self.config.num_hidden_layers): + if f".{idx}." in f"{layer}.": + layer_device_map[idx] = execution_device_map[layer] + break + for idx in range(self.config.num_hidden_layers): + if idx not in layer_device_map: + raise RuntimeError(f"layer {idx} has not been mapped to a device.") + return layer_device_map + + execution_device_map = None + # Taken from dispatch_model from accelerate. + # This is needed here if we don't want to make changes in accelerate in order to save execution_device + # For offloaded case, we need to get the execution device, not just the device where it is offloaded + if hasattr(self, "hf_device_map"): + if set(self.hf_device_map.values()) == {"cpu"} or set(self.hf_device_map.values()) == {"cpu", "disk"}: + main_device = "cpu" + else: + main_device = [d for d in self.hf_device_map.values() if d not in ["cpu", "disk"]][0] + execution_device_map = { + name: main_device if device in ["cpu", "disk"] else device + for name, device in self.hf_device_map.items() + } + layer_device_map = get_layer_device_map(execution_device_map) + + cache_kwargs = { + "config": self.config.get_text_config(), + "max_batch_size": batch_size, + "max_cache_len": max_cache_len, + "device": device, + "dtype": cache_dtype, + "layer_device_map": layer_device_map, + } + self._cache = cache_cls(**cache_kwargs) + if requires_cross_attention_cache: + encoder_kwargs = cache_kwargs.copy() + encoder_kwargs["max_cache_len"] = model_kwargs["encoder_outputs"][0].shape[1] + self._cache = EncoderDecoderCache(self._cache, cache_cls(**encoder_kwargs)) + else: + self._cache.reset() + return self._cache + + def _supports_default_dynamic_cache(self) -> bool: + """ + Return `True` if current model can use a `DynamicCache` instance when initializing the `past_key_values`. + This is mostly the same as `_supports_cache_class` attribute, but add exception for `Jamba` model which + uses its own `HybridMambaAttentionDynamicCache` and do not need to initialize the Cache in advance in + order to save memory (because no back and forth `to_legacy_cache` and `from_legacy_cache` will be performed + for `HybridMambaAttentionDynamicCache`). + """ + return ( + self._supports_cache_class + and "jamba" not in self.__class__.__name__.lower() + and "zamba" not in self.__class__.__name__.lower() + ) + + def _prepare_cache_for_generation( + self, + generation_config: GenerationConfig, + model_kwargs: Dict, + assistant_model: "PreTrainedModel", + batch_size: int, + max_cache_length: int, + device: torch.device, + ) -> bool: + """ + Prepares the cache for generation (if applicable), given `generate`'s parameterization. If a cache is + instantiated, writes it to `model_kwargs`, under the name expected by the model. + """ + + cache_name = "past_key_values" if "mamba" not in self.__class__.__name__.lower() else "cache_params" + requires_cross_attention_cache = ( + self.config.is_encoder_decoder or model_kwargs.get("encoder_outputs") is not None + ) + + # Quick escape route 1: if the user specifies a cache, we only need to: + # a) check for conflicting `generate` arguments + # b) convert to the new cache format (if the user passes a legacy cache and model supports it) + user_defined_cache = model_kwargs.get(cache_name) + if user_defined_cache is not None: + if generation_config.cache_implementation is not None: + raise ValueError( + f"Passing both `cache_implementation` (used to initialize certain caches) and `{cache_name}` (a " + "Cache object) is unsupported. Please use only one of the two." + ) + if isinstance(user_defined_cache, tuple) and self._supports_default_dynamic_cache(): + model_kwargs[cache_name] = ( + DynamicCache.from_legacy_cache(user_defined_cache) + if not requires_cross_attention_cache + else EncoderDecoderCache.from_legacy_cache(user_defined_cache) + ) + return + + # Quick escape route 2: if the user specifies no cache is to be used. (conflicting arguments are handled in + # `generation_config.validate()`) + if generation_config.use_cache is False: + return + + # Quick escape route 3: model that only supports legacy caches = nothing to prepare + if not self._supports_default_dynamic_cache(): + if generation_config.cache_implementation is not None: + warnings.warn( + "This model does not support `Cache` instances, it only supports the legacy cache format (tuple " + f"of tuples). `cache_implementation` (set to {generation_config.cache_implementation}) will be " + "ignored.", + UserWarning, + ) + return + + # Otherwise we NEED to prepare a cache, based on `generation_config.cache_implementation` + + # TODO(joao): support static caches in assisted generation. assisted generation needs to roll back caches, + # which is only supported in dynamic caches atm + if assistant_model is not None and generation_config.cache_implementation is not None: + logger.warning_once( + "An assistant model is provided, using a dynamic cache instead of a cache of type=" + f"'{generation_config.cache_implementation}'." + ) + generation_config.cache_implementation = None + + if generation_config.cache_implementation is not None: + if generation_config.cache_implementation in NEED_SETUP_CACHE_CLASSES_MAPPING: + if generation_config.cache_implementation == "static" and not self._supports_static_cache: + raise ValueError( + "This model does not support `cache_implementation='static'`. Please check the following " + "issue: https://github.com/huggingface/transformers/issues/28981" + ) + model_kwargs[cache_name] = self._get_cache( + cache_implementation=generation_config.cache_implementation, + batch_size=max(generation_config.num_beams, generation_config.num_return_sequences) * batch_size, + max_cache_len=max_cache_length, + device=device, + model_kwargs=model_kwargs, + ) + elif generation_config.cache_implementation == "quantized": + if not self._supports_quantized_cache: + raise ValueError( + "This model does not support the quantized cache. If you want your model to support quantized " + "cache, please open an issue and tag @zucchini-nlp." + ) + + cache_config = ( + generation_config.cache_config + if generation_config.cache_config is not None + else QuantizedCacheConfig() + ) + cache_class = QUANT_BACKEND_CLASSES_MAPPING[cache_config.backend] + + if cache_config.backend == "quanto" and not is_optimum_quanto_available(): + raise ImportError( + "You need to install optimum-quanto in order to use KV cache quantization with optimum-quanto backend. " + "Please install it via with `pip install optimum-quanto`" + ) + elif cache_config.backend == "HQQ" and not is_hqq_available(): + raise ImportError( + "You need to install `HQQ` in order to use KV cache quantization with HQQ backend. " + "Please install it via with `pip install hqq`" + ) + + model_kwargs[cache_name] = cache_class(cache_config) + elif generation_config.cache_implementation == "offloaded": + model_kwargs[cache_name] = OffloadedCache() + + # Use DynamicCache() instance by default. This will avoid back and forth from legacy format that + # keeps copying the cache thus using much more memory + else: + model_kwargs[cache_name] = ( + DynamicCache() + if not requires_cross_attention_cache + else EncoderDecoderCache(DynamicCache(), DynamicCache()) + ) + + def _supports_num_logits_to_keep(self) -> bool: + """ + Return True if the current model supports the keyword argument `num_logits_to_keep` in forward() + to save memory. Checking it in this way allows to avoid using a new model attribute. + """ + return "num_logits_to_keep" in set(inspect.signature(self.forward).parameters.keys()) + + def _prepare_special_tokens( + self, + generation_config: GenerationConfig, + kwargs_has_attention_mask: Optional[bool] = None, + device: Optional[Union[torch.device, str]] = None, + ): + """ + Prepares the special tokens for generation, overwriting the generation config with their processed versions + converted to tensor. + + Note that `generation_config` is changed in place and stops being serializable after this method is called. + That is no problem if called within `generate` (`generation_config` is a local copy that doesn't leave the + function). However, if called outside `generate`, consider creating a copy of `generation_config` first. + """ + + # Convert special tokens to tensors + def _tensor_or_none(token, device=None): + if token is None: + return token + + device = device if device is not None else self.device + if isinstance(token, torch.Tensor): + return token.to(device) + return torch.tensor(token, device=device, dtype=torch.long) + + bos_token_tensor = _tensor_or_none(generation_config.bos_token_id, device=device) + eos_token_tensor = _tensor_or_none(generation_config.eos_token_id, device=device) + pad_token_tensor = _tensor_or_none(generation_config.pad_token_id, device=device) + decoder_start_token_tensor = _tensor_or_none(generation_config.decoder_start_token_id, device=device) + + # for BC we also try to get `decoder_start_token_id` or `bos_token_id` (#30892) + if self.config.is_encoder_decoder: + decoder_start_token_tensor = ( + decoder_start_token_tensor if decoder_start_token_tensor is not None else bos_token_tensor + ) + + # We can have more than one eos token. Always treat it as a 1D tensor (when it exists). + if eos_token_tensor is not None and eos_token_tensor.ndim == 0: + eos_token_tensor = eos_token_tensor.unsqueeze(0) + + # Set pad token if unset (and there are conditions to do so) + if pad_token_tensor is None and eos_token_tensor is not None: + if not is_torchdynamo_compiling(): + if kwargs_has_attention_mask is not None and not kwargs_has_attention_mask: + logger.warning( + "The attention mask and the pad token id were not set. As a consequence, you may observe " + "unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results." + ) + pad_token_tensor = eos_token_tensor[0] + logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{pad_token_tensor} for open-end generation.") + + # Sanity checks/warnings + if self.config.is_encoder_decoder and decoder_start_token_tensor is None: + raise ValueError( + "`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation." + ) + if not is_torchdynamo_compiling(): # Checks that depend on tensor-dependent control flow + if ( + eos_token_tensor is not None + and isin_mps_friendly(elements=eos_token_tensor, test_elements=pad_token_tensor).any() + ): + if kwargs_has_attention_mask is not None and not kwargs_has_attention_mask: + logger.warning_once( + "The attention mask is not set and cannot be inferred from input because pad token is same as " + "eos token. As a consequence, you may observe unexpected behavior. Please pass your input's " + "`attention_mask` to obtain reliable results." + ) + if eos_token_tensor is not None and ( + torch.is_floating_point(eos_token_tensor) or (eos_token_tensor < 0).any() + ): + logger.warning( + f"`eos_token_id` should consist of positive integers, but is {eos_token_tensor}. Your generation " + "will not stop until the maximum length is reached. Depending on other flags, it may even crash." + ) + + # Update generation config with the updated special tokens tensors + # NOTE: this must be written into a different attribute name than the one holding the original special tokens + # (in their non-tensor form), in order to enable end-to-end compilation. See + # https://pytorch.org/docs/stable/torch.compiler_cudagraph_trees.html#limitations + generation_config._bos_token_tensor = bos_token_tensor + generation_config._eos_token_tensor = eos_token_tensor + generation_config._pad_token_tensor = pad_token_tensor + generation_config._decoder_start_token_tensor = decoder_start_token_tensor + + @torch.no_grad() + def generate( + self, + inputs: Optional[torch.Tensor] = None, + generation_config: Optional[GenerationConfig] = None, + logits_processor: Optional[LogitsProcessorList] = None, + stopping_criteria: Optional[StoppingCriteriaList] = None, + prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None, + synced_gpus: Optional[bool] = None, + assistant_model: Optional["PreTrainedModel"] = None, + streamer: Optional["BaseStreamer"] = None, + negative_prompt_ids: Optional[torch.Tensor] = None, + negative_prompt_attention_mask: Optional[torch.Tensor] = None, + **kwargs, + ) -> Union[GenerateOutput, torch.LongTensor]: + r""" + + Generates sequences of token ids for models with a language modeling head. + + + + Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the + model's default generation configuration. You can override any `generation_config` by passing the corresponding + parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`. + + For an overview of generation strategies and code examples, check out the [following + guide](../generation_strategies). + + + + Parameters: + inputs (`torch.Tensor` of varying shape depending on the modality, *optional*): + The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the + method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs` + should be in the format of `input_ids`. For encoder-decoder models *inputs* can represent any of + `input_ids`, `input_values`, `input_features`, or `pixel_values`. + generation_config ([`~generation.GenerationConfig`], *optional*): + The generation configuration to be used as base parametrization for the generation call. `**kwargs` + passed to generate matching the attributes of `generation_config` will override them. If + `generation_config` is not provided, the default will be used, which has the following loading + priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model + configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s + default values, whose documentation should be checked to parameterize generation. + logits_processor (`LogitsProcessorList`, *optional*): + Custom logits processors that complement the default logits processors built from arguments and + generation config. If a logit processor is passed that is already created with the arguments or a + generation config an error is thrown. This feature is intended for advanced users. + stopping_criteria (`StoppingCriteriaList`, *optional*): + Custom stopping criteria that complements the default stopping criteria built from arguments and a + generation config. If a stopping criteria is passed that is already created with the arguments or a + generation config an error is thrown. If your stopping criteria depends on the `scores` input, make + sure you pass `return_dict_in_generate=True, output_scores=True` to `generate`. This feature is + intended for advanced users. + prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*): + If provided, this function constraints the beam search to allowed tokens only at each step. If not + provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and + `input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned + on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful + for constrained generation conditioned on the prefix, as described in [Autoregressive Entity + Retrieval](https://arxiv.org/abs/2010.00904). + synced_gpus (`bool`, *optional*): + Whether to continue running the while loop until max_length. Unless overridden, this flag will be set + to `True` if using `FullyShardedDataParallel` or DeepSpeed ZeRO Stage 3 with multiple GPUs to avoid + deadlocking if one GPU finishes generating before other GPUs. Otherwise, defaults to `False`. + assistant_model (`PreTrainedModel`, *optional*): + An assistant model that can be used to accelerate generation. The assistant model must have the exact + same tokenizer. The acceleration is achieved when forecasting candidate tokens with the assistant model + is much faster than running generation with the model you're calling generate from. As such, the + assistant model should be much smaller. + streamer (`BaseStreamer`, *optional*): + Streamer object that will be used to stream the generated sequences. Generated tokens are passed + through `streamer.put(token_ids)` and the streamer is responsible for any further processing. + negative_prompt_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + The negative prompt needed for some processors such as CFG. The batch size must match the input batch + size. This is an experimental feature, subject to breaking API changes in future versions. + negative_prompt_attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Attention_mask for `negative_prompt_ids`. + kwargs (`Dict[str, Any]`, *optional*): + Ad hoc parametrization of `generation_config` and/or additional model-specific kwargs that will be + forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder + specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. + + Return: + [`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` + or when `config.return_dict_in_generate=True`) or a `torch.LongTensor`. + + If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible + [`~utils.ModelOutput`] types are: + + - [`~generation.GenerateDecoderOnlyOutput`], + - [`~generation.GenerateBeamDecoderOnlyOutput`] + + If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible + [`~utils.ModelOutput`] types are: + + - [`~generation.GenerateEncoderDecoderOutput`], + - [`~generation.GenerateBeamEncoderDecoderOutput`] + """ + + # 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call + self._validate_model_class() + tokenizer = kwargs.pop("tokenizer", None) # Pull this out first, we only use it for stopping criteria + assistant_tokenizer = kwargs.pop("assistant_tokenizer", None) # only used for assisted generation + + generation_config, model_kwargs = self._prepare_generation_config(generation_config, **kwargs) + self._validate_model_kwargs(model_kwargs.copy()) + self._validate_assistant(assistant_model, tokenizer, assistant_tokenizer) + + # 2. Set generation parameters if not already defined + if synced_gpus is None: + synced_gpus = (is_deepspeed_zero3_enabled() or is_fsdp_managed_module(self)) and dist.get_world_size() > 1 + + logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList() + stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList() + + accepts_attention_mask = "attention_mask" in set(inspect.signature(self.forward).parameters.keys()) + requires_attention_mask = "encoder_outputs" not in model_kwargs + kwargs_has_attention_mask = model_kwargs.get("attention_mask", None) is not None + + # 3. Define model inputs + inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs( + inputs, generation_config.bos_token_id, model_kwargs + ) + batch_size = inputs_tensor.shape[0] + + device = inputs_tensor.device + self._prepare_special_tokens(generation_config, kwargs_has_attention_mask, device=device) + + # decoder-only models must use left-padding for batched generation. + if not self.config.is_encoder_decoder and not is_torchdynamo_compiling(): + # If `input_ids` was given, check if the last id in any sequence is `pad_token_id` + # Note: If using, `inputs_embeds` this check does not work, because we want to be more hands-off. + if ( + generation_config._pad_token_tensor is not None + and batch_size > 1 + and len(inputs_tensor.shape) == 2 + and torch.sum(inputs_tensor[:, -1] == generation_config._pad_token_tensor) > 0 + ): + logger.warning( + "A decoder-only architecture is being used, but right-padding was detected! For correct " + "generation results, please set `padding_side='left'` when initializing the tokenizer." + ) + + # 4. Define other model kwargs + # decoder-only models with inputs_embeds forwarding must use caching (otherwise we can't detect whether we are + # generating the first new token or not, and we only want to use the embeddings for the first new token) + if not self.config.is_encoder_decoder and model_input_name == "inputs_embeds": + generation_config.use_cache = True + + if not kwargs_has_attention_mask and requires_attention_mask and accepts_attention_mask: + model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation( + inputs_tensor, generation_config, model_kwargs + ) + elif kwargs_has_attention_mask: + # TODO (joao): generalize this check with other types of inputs + if model_input_name == "input_ids" and len(model_kwargs["attention_mask"].shape) > 2: + raise ValueError("`attention_mask` passed to `generate` must be 2D.") + + if self.config.is_encoder_decoder and "encoder_outputs" not in model_kwargs: + enc_st = time.perf_counter() + # if model is encoder decoder encoder_outputs are created and added to `model_kwargs` + model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation( + inputs_tensor, model_kwargs, model_input_name, generation_config + ) + enc_end = time.perf_counter() + self.encoder_time = enc_end - enc_st + if self.do_print: + print(f"=====================encoder cost {enc_end - enc_st} s=======================") + + # 5. Prepare `input_ids` which will be used for auto-regressive generation + if self.config.is_encoder_decoder: + input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation( + batch_size=batch_size, + model_input_name=model_input_name, + model_kwargs=model_kwargs, + decoder_start_token_id=generation_config._decoder_start_token_tensor, + device=inputs_tensor.device, + ) + else: + input_ids = inputs_tensor if model_input_name == "input_ids" else model_kwargs.pop("input_ids") + + if generation_config.token_healing: + input_ids = self.heal_tokens(input_ids, tokenizer) + + if streamer is not None: + streamer.put(input_ids.cpu()) + + # 6. Prepare `max_length` depending on other stopping criteria. + input_ids_length = input_ids.shape[-1] + has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None + has_default_min_length = kwargs.get("min_length") is None and generation_config.min_length is not None + generation_config = self._prepare_generated_length( + generation_config=generation_config, + has_default_max_length=has_default_max_length, + has_default_min_length=has_default_min_length, + model_input_name=model_input_name, + inputs_tensor=inputs_tensor, + input_ids_length=input_ids_length, + ) + + # If the model supports `num_logits_to_keep` in forward(), set it to 1 to avoid computing the whole + # logit matrix. This can save a lot of memory during the first forward pass. Note that assisted decoding + # dynamically overrides this value as it can need more than the last token logits + if self._supports_num_logits_to_keep() and "num_logits_to_keep" not in model_kwargs: + model_kwargs["num_logits_to_keep"] = 1 + + self._validate_generated_length(generation_config, input_ids_length, has_default_max_length) + + # 7. Prepare the cache. + # - `model_kwargs` may be updated in place with a cache as defined by the parameters in `generation_config`. + # - different models have a different cache name expected by the model (default = "past_key_values") + # - `max_length`, prepared above, is used to determine the maximum cache length + # TODO (joao): remove `user_defined_cache` after v4.47 (remove default conversion to legacy format) + cache_name = "past_key_values" if "mamba" not in self.__class__.__name__.lower() else "cache_params" + user_defined_cache = model_kwargs.get(cache_name) + max_cache_length = generation_config.max_length + if ( + inputs_tensor.shape[1] != input_ids_length + and model_input_name == "inputs_embeds" + and not self.config.is_encoder_decoder + ): + max_cache_length += inputs_tensor.shape[1] + self._prepare_cache_for_generation( + generation_config, model_kwargs, assistant_model, batch_size, max_cache_length, device + ) + + # 8. determine generation mode + generation_mode = generation_config.get_generation_mode(assistant_model) + + if streamer is not None and (generation_config.num_beams > 1): + raise ValueError( + "`streamer` cannot be used with beam search (yet!). Make sure that `num_beams` is set to 1." + ) + + if not is_torchdynamo_compiling() and self.device.type != input_ids.device.type: + warnings.warn( + "You are calling .generate() with the `input_ids` being on a device type different" + f" than your model's device. `input_ids` is on {input_ids.device.type}, whereas the model" + f" is on {self.device.type}. You may experience unexpected behaviors or slower generation." + " Please make sure that you have put `input_ids` to the" + f" correct device by calling for example input_ids = input_ids.to('{self.device.type}') before" + " running `.generate()`.", + UserWarning, + ) + + # 9. prepare logits processors and stopping criteria + prepared_logits_processor = self._get_logits_processor( + generation_config=generation_config, + input_ids_seq_length=input_ids_length, + encoder_input_ids=inputs_tensor, + prefix_allowed_tokens_fn=prefix_allowed_tokens_fn, + logits_processor=logits_processor, + device=inputs_tensor.device, + model_kwargs=model_kwargs, + negative_prompt_ids=negative_prompt_ids, + negative_prompt_attention_mask=negative_prompt_attention_mask, + ) + prepared_stopping_criteria = self._get_stopping_criteria( + generation_config=generation_config, stopping_criteria=stopping_criteria, tokenizer=tokenizer, **kwargs + ) + + # Set model_kwargs `use_cache` so we can use it later in forward runs + model_kwargs["use_cache"] = generation_config.use_cache + + # 10. go into different generation modes + if generation_mode == GenerationMode.ASSISTED_GENERATION: + if generation_config.num_return_sequences > 1: + raise ValueError( + "num_return_sequences has to be 1 when doing assisted generate, " + f"but is {generation_config.num_return_sequences}." + ) + if batch_size > 1: + raise ValueError("assisted generate is only supported for batch_size = 1") + if not model_kwargs["use_cache"]: + raise ValueError("assisted generate requires `use_cache=True`") + if generation_config.cache_implementation in ["static", "hybrid", "sliding_window"]: + raise ValueError("assisted generate is not supported with Static cache classes`") + if self._is_stateful: + # In assisted generation we need the ability to confirm whether the model would pick certain tokens, + # which is not possible with stateful models (they can't reset to a previous subset of generated text) + raise ValueError( + f"assisted generation is not supported with stateful models, such as {self.__class__.__name__}" + ) + + # 11. Get the candidate generator, given the parameterization + candidate_generator = self._get_candidate_generator( + generation_config=generation_config, + input_ids=input_ids, + inputs_tensor=inputs_tensor, + assistant_model=assistant_model, + logits_processor=logits_processor, + target_tokenizer=tokenizer, + assistant_tokenizer=assistant_tokenizer, + model_kwargs=model_kwargs, + ) + + # 12. run assisted generate + result = self._assisted_decoding( + input_ids, + candidate_generator=candidate_generator, + logits_processor=prepared_logits_processor, + stopping_criteria=prepared_stopping_criteria, + generation_config=generation_config, + synced_gpus=synced_gpus, + streamer=streamer, + **model_kwargs, + ) + elif generation_mode == GenerationMode.DOLA_GENERATION: + if self._is_stateful: + # DoLa decoding was not designed for stateful models, and would require some changes + raise ValueError( + f"dola decoding is not supported with stateful models, such as {self.__class__.__name__}" + ) + result = self._dola_decoding( + input_ids, + dola_layers=generation_config.dola_layers, + logits_processor=prepared_logits_processor, + stopping_criteria=prepared_stopping_criteria, + generation_config=generation_config, + synced_gpus=synced_gpus, + streamer=streamer, + **model_kwargs, + ) + + elif generation_mode == GenerationMode.CONTRASTIVE_SEARCH: + if not model_kwargs["use_cache"]: + raise ValueError("Contrastive search requires `use_cache=True`") + if self._is_stateful: + # Just like assisted generation, we need to be able to rollback to a previous state (see comment above) + raise ValueError( + f"contrastive search is not supported with stateful models, such as {self.__class__.__name__}" + ) + + result = self._contrastive_search( + input_ids, + logits_processor=prepared_logits_processor, + stopping_criteria=prepared_stopping_criteria, + generation_config=generation_config, + synced_gpus=synced_gpus, + streamer=streamer, + **model_kwargs, + ) + + elif generation_mode in (GenerationMode.SAMPLE, GenerationMode.GREEDY_SEARCH): + # 11. expand input_ids with `num_return_sequences` additional sequences per batch + input_ids, model_kwargs = self._expand_inputs_for_generation( + input_ids=input_ids, + expand_size=generation_config.num_return_sequences, + is_encoder_decoder=self.config.is_encoder_decoder, + **model_kwargs, + ) + + # 12. run sample (it degenerates to greedy search when `generation_config.do_sample=False`) + result = self._sample( + input_ids, + logits_processor=prepared_logits_processor, + stopping_criteria=prepared_stopping_criteria, + generation_config=generation_config, + synced_gpus=synced_gpus, + streamer=streamer, + **model_kwargs, + ) + + elif generation_mode in (GenerationMode.BEAM_SAMPLE, GenerationMode.BEAM_SEARCH): + # 11. prepare beam search scorer + beam_scorer = BeamSearchScorer( + batch_size=batch_size, + num_beams=generation_config.num_beams, + device=inputs_tensor.device, + length_penalty=generation_config.length_penalty, + do_early_stopping=generation_config.early_stopping, + num_beam_hyps_to_keep=generation_config.num_return_sequences, + max_length=generation_config.max_length, + ) + + # 12. interleave input_ids with `num_beams` additional sequences per batch + input_ids, model_kwargs = self._expand_inputs_for_generation( + input_ids=input_ids, + expand_size=generation_config.num_beams, + is_encoder_decoder=self.config.is_encoder_decoder, + **model_kwargs, + ) + + # 13. run beam sample + result = self._beam_search( + input_ids, + beam_scorer, + logits_processor=prepared_logits_processor, + stopping_criteria=prepared_stopping_criteria, + generation_config=generation_config, + synced_gpus=synced_gpus, + **model_kwargs, + ) + + elif generation_mode == GenerationMode.GROUP_BEAM_SEARCH: + # 11. prepare beam search scorer + beam_scorer = BeamSearchScorer( + batch_size=batch_size, + num_beams=generation_config.num_beams, + device=inputs_tensor.device, + length_penalty=generation_config.length_penalty, + do_early_stopping=generation_config.early_stopping, + num_beam_hyps_to_keep=generation_config.num_return_sequences, + num_beam_groups=generation_config.num_beam_groups, + max_length=generation_config.max_length, + ) + # 12. interleave input_ids with `num_beams` additional sequences per batch + input_ids, model_kwargs = self._expand_inputs_for_generation( + input_ids=input_ids, + expand_size=generation_config.num_beams, + is_encoder_decoder=self.config.is_encoder_decoder, + **model_kwargs, + ) + # 13. run beam search + result = self._group_beam_search( + input_ids, + beam_scorer, + logits_processor=prepared_logits_processor, + stopping_criteria=prepared_stopping_criteria, + generation_config=generation_config, + synced_gpus=synced_gpus, + **model_kwargs, + ) + + elif generation_mode == GenerationMode.CONSTRAINED_BEAM_SEARCH: + final_constraints = [] + if generation_config.constraints is not None: + final_constraints = generation_config.constraints + + if generation_config.force_words_ids is not None: + + def typeerror(): + raise ValueError( + "`force_words_ids` has to either be a `List[List[List[int]]]` or `List[List[int]]` " + f"of positive integers, but is {generation_config.force_words_ids}." + ) + + if ( + not isinstance(generation_config.force_words_ids, list) + or len(generation_config.force_words_ids) == 0 + ): + typeerror() + + for word_ids in generation_config.force_words_ids: + if isinstance(word_ids[0], list): + if not isinstance(word_ids, list) or len(word_ids) == 0: + typeerror() + if any(not isinstance(token_ids, list) for token_ids in word_ids): + typeerror() + if any( + any((not isinstance(token_id, int) or token_id < 0) for token_id in token_ids) + for token_ids in word_ids + ): + typeerror() + + constraint = DisjunctiveConstraint(word_ids) + else: + if not isinstance(word_ids, list) or len(word_ids) == 0: + typeerror() + if any((not isinstance(token_id, int) or token_id < 0) for token_id in word_ids): + typeerror() + + constraint = PhrasalConstraint(word_ids) + final_constraints.append(constraint) + + # 11. prepare beam search scorer + constrained_beam_scorer = ConstrainedBeamSearchScorer( + constraints=final_constraints, + batch_size=batch_size, + num_beams=generation_config.num_beams, + device=inputs_tensor.device, + length_penalty=generation_config.length_penalty, + do_early_stopping=generation_config.early_stopping, + num_beam_hyps_to_keep=generation_config.num_return_sequences, + max_length=generation_config.max_length, + ) + # 12. interleave input_ids with `num_beams` additional sequences per batch + input_ids, model_kwargs = self._expand_inputs_for_generation( + input_ids=input_ids, + expand_size=generation_config.num_beams, + is_encoder_decoder=self.config.is_encoder_decoder, + **model_kwargs, + ) + # 13. run beam search + result = self._constrained_beam_search( + input_ids, + constrained_beam_scorer=constrained_beam_scorer, + logits_processor=prepared_logits_processor, + stopping_criteria=prepared_stopping_criteria, + generation_config=generation_config, + synced_gpus=synced_gpus, + **model_kwargs, + ) + + # Convert to legacy cache format if requested + if ( + generation_config.return_legacy_cache is not False # Should check for `True` after v4.47 + and not is_torchdynamo_compiling() + and hasattr(result, "past_key_values") + and hasattr(result.past_key_values, "to_legacy_cache") + and result.past_key_values.to_legacy_cache is not None + ): + # handle BC (convert by default if he user hasn't passed a cache AND the cache is of the default type) + should_convert_cache = generation_config.return_legacy_cache + is_user_defined_cache = user_defined_cache is not None + is_default_cache_type = ( + type(result.past_key_values) == DynamicCache # noqa E721 + or ( + isinstance(result.past_key_values, EncoderDecoderCache) + and type(result.past_key_values.self_attention_cache) == DynamicCache # noqa E721 + and type(result.past_key_values.cross_attention_cache) == DynamicCache # noqa E721 + ) + ) + if not is_user_defined_cache and is_default_cache_type: + logger.warning_once( + "From v4.47 onwards, when a model cache is to be returned, `generate` will return a `Cache` " + "instance instead by default (as opposed to the legacy tuple of tuples format). If you want to " + "keep returning the legacy format, please set `return_legacy_cache=True`." + ) + should_convert_cache = True + if should_convert_cache: + result.past_key_values = result.past_key_values.to_legacy_cache() + return result + + def _has_unfinished_sequences( + self, + this_peer_finished: bool, + synced_gpus: bool, + device: torch.device, + cur_len: Optional[int] = None, + max_length: Optional[int] = None, + ) -> bool: + """ + Returns whether there are still unfinished sequences in the device. The existence of unfinished sequences is + fed through `this_peer_finished`. ZeRO stage 3-friendly. + """ + # torch.compile does not support data-dependent control flow. This is a workaround to allow torch.compile, + # although we lose the ability to stop when all sequences return an EOS token (and other stopping criteria) + # TODO (joao): remove this when torch's support for control flow is not experimental (https://pytorch.org/docs/stable/generated/torch.cond.html) + if is_torchdynamo_compiling(): + return cur_len < max_length + else: + if synced_gpus: + # Under synced_gpus the `forward` call must continue until all gpus complete their sequence. + # The following logic allows an early break if all peers finished generating their sequence + this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(device) + # send 0.0 if we finished, 1.0 otherwise + dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM) + # did all peers finish? the reduced sum will be 0.0 then + if this_peer_finished_flag.item() == 0.0: + return False + elif this_peer_finished: + return False + return True + + def heal_tokens( + self, input_ids: torch.LongTensor, tokenizer: Optional["PreTrainedTokenizerBase"] = None + ) -> torch.LongTensor: + r""" + Generates sequences of token ids for models with a language modeling head. + Parameters: + input_ids (`torch.LongTensor`): The sequence used as a prompt for the generation. + tokenizer (`PreTrainedTokenizerBase`, *optional*): The tokenizer used to decode the input ids. + Return: + `torch.LongTensor` where each sequence has its tail token replaced with its appropriate extension. + """ + if tokenizer is None: + raise ValueError( + " When generating with token healing, you must pass the model's tokenizer to the `tokenizer` " + "argument of `generate`." + ) + + bos_token_id, pad_token_id = tokenizer.bos_token_id, tokenizer.pad_token_id + vocab_trie = ExtensionsTrie(tokenizer.get_vocab()) + generation_config = GenerationConfig(max_new_tokens=1, pad_token_id=pad_token_id) + + # assumption: leading/trailing whitespace is not meaningful, so the prompts are + # stripped before re-tokenizing to desensitize generation to whitespace artefacts + prompts = [p.strip() for p in tokenizer.batch_decode(input_ids, skip_special_tokens=True)] + input_ids = tokenizer( + prompts, + return_tensors="pt", + padding=True, + ).input_ids.to(input_ids.device) + + # replace bos with pad to not condition healing on it + input_ids = torch.where(input_ids == bos_token_id, pad_token_id, input_ids) + + """ + the latter code assumes the input_ids is not empty, + input_id has to be checked if contains elements + """ + if input_ids.numel() == 0: + return input_ids + + tail_ids = input_ids[:, -1].tolist() + + space_tok = tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids(" "))[0] + # tail tokens are used for a prefix search, thus, whitespaces are replaced with + # their tokenization (e.g. 'Ġ') to enable search for tokens prefixed with a whitespace + tail_toks = (tokenizer.decode(t).replace(" ", space_tok) for t in tail_ids) + + for batch_idx, (tail_id, tail_tok) in enumerate(zip(tail_ids, tail_toks)): + batch_ids = input_ids[batch_idx] + if torch.all(batch_ids == pad_token_id).item(): + continue # skip empty sequences (all pad ids) + + # apply bias for alternatives (extensions) to the tail token + """ + seq_bias key has to be tuple with int so have to use + tokenizer function to convert str to int + """ + seq_bias = { + (tokenizer.convert_tokens_to_ids(alt_tok),): 10.0 for alt_tok in vocab_trie.extensions(prefix=tail_tok) + } + + if len(seq_bias) == 1: + continue # skip if there are no token alternatives to heal with + + # slightly favor original token to limit aggressive healing e.g. 'http' -> 'https' + seq_bias[(tail_id,)] += 1.0 + generation_config.update(sequence_bias=seq_bias) + + trimmed_ids = batch_ids[:-1] + + """ + the latter code assumes trimmed_ids is not empty + so have to check the its element count + """ + if trimmed_ids.numel() == 0: + continue + + # if the prompt is a single (non-pad) token, regenerate from bos + if len(batch_ids[batch_ids != pad_token_id]) == 1: + trimmed_ids[-1] = bos_token_id + + input_ids[batch_idx] = self.generate(trimmed_ids.unsqueeze(0), generation_config=generation_config) + + return input_ids + + def _dola_decoding( + self, + input_ids: torch.LongTensor, + dola_layers: Union[str, List[int]], + logits_processor: LogitsProcessorList, + stopping_criteria: StoppingCriteriaList, + generation_config: GenerationConfig, + synced_gpus: bool, + streamer: "BaseStreamer", + **model_kwargs, + ) -> Union[GenerateNonBeamOutput, torch.LongTensor]: + r""" + Generates sequences of token ids for models with a language modeling head using **dola decoding** and can be + used for decoder-only text models. + The method is based on the paper "DoLa: Decoding by Contrasting Layers Improves Factuality in Large Language + Models" (https://arxiv.org/abs/2309.03883) in ICLR 2024. + + Parameters: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + The sequence used as a prompt for the generation. + dola_layers (`Union[str, List[int]]`): + The candidate layers used in contrasting layers of DoLa. It can be either 1) 'low' or 'high', which + means the lower part or higher part of the model layers, respectively, or 2) a list of layer indices + to be used for candidate layers. The 0-th layer is the word embedding layer of the model. + logits_processor (`LogitsProcessorList`): + An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`] + used to modify the prediction scores of the language modeling head applied at each generation step. + stopping_criteria (`StoppingCriteriaList`, *optional*): + An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`] + used to tell if the generation loop should stop. + generation_config ([`~generation.GenerationConfig`]): + The generation configuration to be used as parametrization of the decoding method. + synced_gpus (`bool`): + Whether to continue running the while loop until max_length (needed to avoid deadlocking with + `FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3). + streamer (`BaseStreamer`, *optional*): + Streamer object that will be used to stream the generated sequences. Generated tokens are passed + through `streamer.put(token_ids)` and the streamer is responsible for any further processing. + model_kwargs: + Additional model specific keyword arguments will be forwarded to the `forward` function of the model. + If model is an encoder-decoder model the kwargs should include `encoder_outputs`. + + Return: + [`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`] + or `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a + [`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and + `return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if + `model.config.is_encoder_decoder=True`. + """ + + if self.config.is_encoder_decoder: + raise ValueError("DoLa decoding is only available for decoder-only models.") + # init values + + pad_token_id = generation_config._pad_token_tensor + output_attentions = generation_config.output_attentions + output_hidden_states = generation_config.output_hidden_states + output_scores = generation_config.output_scores + output_logits = generation_config.output_logits + return_dict_in_generate = generation_config.return_dict_in_generate + has_eos_stopping_criteria = any(hasattr(criteria, "eos_token_id") for criteria in stopping_criteria) + do_sample = generation_config.do_sample + + # init attention / hidden states / scores tuples + scores = () if (return_dict_in_generate and output_scores) else None + raw_logits = () if (return_dict_in_generate and output_logits) else None + decoder_attentions = () if (return_dict_in_generate and output_attentions) else None + cross_attentions = () if (return_dict_in_generate and output_attentions) else None + decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None + + # keep track of which sequences are already finished + batch_size = input_ids.shape[0] + unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device) + model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs) + + this_peer_finished = False + + # prepare layers for DoLa decoding + final_layer = self.config.get_text_config().num_hidden_layers + # if the model has tied word embeddings, we skip the word embeddings (0-th) layer and start from the 2nd layer, + # as the early exit from word embeddings will become identity function + # if the model is really shallow (<=2 layers), we use the 1st layer if it's not the final layer and the 0-th + # layer otherwise. Notice that DoLa does not help shallow models much. + if not self.config.tie_word_embeddings: + start_layer = 0 + elif final_layer > 2: + start_layer = 2 + elif final_layer == 2: + start_layer = 1 + else: + start_layer = 0 + + # For `N`-layer models with `N <= 40` layers, the layers of `range(0, N // 2, 2)` and `range(N // 2, N, 2)` + # are used for `'low'` and `'high'` layers, respectively. + # For models with `N > 40` layers, the layers of `range(0, 20, 2)` and `range(N - 20, N, 2)` are used for + # `'low'` and `'high'` layers, respectively. + if isinstance(dola_layers, str) and dola_layers == "low": + if start_layer == final_layer // 2: + candidate_premature_layers = [start_layer] + else: + candidate_premature_layers = ( + list(range(start_layer, final_layer // 2, 2)) + if final_layer <= 40 + else list(range(start_layer, 20, 2)) + ) + elif isinstance(dola_layers, str) and dola_layers == "high": + candidate_premature_layers = ( + list(range(final_layer // 2, final_layer, 2)) + if final_layer <= 40 + else list(range(final_layer - 20, final_layer, 2)) + ) + # Set the `dola_layers` to a list of integers for layer indices to contrast manually specified layers. + elif isinstance(dola_layers, list): + candidate_premature_layers = [i for i in dola_layers if i < final_layer] + else: + raise ValueError("dola_layers must be either 'low', 'high' or a list of integers.") + + lm_head = self.get_output_embeddings() + if lm_head is None: + raise ValueError("DoLa is not supported for models that don't have output embeddings.") + + while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device): + # prepare model inputs + model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) + + # forward pass to get next token + outputs = self( + **model_inputs, + return_dict=True, + output_attentions=output_attentions, + output_hidden_states=True, + ) + + # .float() is needed to retain precision for later logits manipulations + final_layer_next_token_logits = outputs.logits[:, -1, :].detach().clone().float() + final_logits = outputs.logits[:, -1, :].float() + candidate_premature_logits = {} + for candidate_premature_layer in candidate_premature_layers: + candidate_premature_logits[candidate_premature_layer] = lm_head( + outputs.hidden_states[candidate_premature_layer][:, -1, :] + ).to(final_logits.device) + + # synced_gpus: don't waste resources running the code we don't need; kwargs must be updated before skipping + model_kwargs = self._update_model_kwargs_for_generation( + outputs, + model_kwargs, + is_encoder_decoder=self.config.is_encoder_decoder, + ) + if synced_gpus and this_peer_finished: + continue + + next_token_logits = _dola_select_contrast( + candidate_premature_layers, candidate_premature_logits, final_logits + ) + next_token_logits = next_token_logits.to(input_ids.device) + # pre-process distribution + next_token_scores = logits_processor(input_ids, next_token_logits) + + # Store scores, attentions and hidden_states when required + if return_dict_in_generate: + if output_scores: + scores += (next_token_scores,) + if output_logits: + raw_logits += (final_layer_next_token_logits,) + if output_attentions: + decoder_attentions += ( + (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,) + ) + if self.config.is_encoder_decoder: + cross_attentions += (outputs.cross_attentions,) + + if output_hidden_states: + decoder_hidden_states += ( + (outputs.decoder_hidden_states,) + if self.config.is_encoder_decoder + else (outputs.hidden_states,) + ) + + if do_sample: # sample + probs = nn.functional.softmax(next_token_scores, dim=-1) + next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1) + else: # argmax + next_tokens = torch.argmax(next_token_scores, dim=-1) + + # finished sentences should have their next token be a padding token + if has_eos_stopping_criteria: + next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences) + + # update generated ids, model inputs, and length for next step + input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) + if streamer is not None: + streamer.put(next_tokens.cpu()) + + # stop when each sentence is finished + unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores) + this_peer_finished = unfinished_sequences.max() == 0 + + if streamer is not None: + streamer.end() + + if return_dict_in_generate: + return GenerateDecoderOnlyOutput( + sequences=input_ids, + scores=scores, + logits=raw_logits, + attentions=decoder_attentions, + hidden_states=decoder_hidden_states, + past_key_values=model_kwargs.get("past_key_values"), + ) + else: + return input_ids + + @torch.no_grad() + def _contrastive_search( + self, + input_ids: torch.LongTensor, + logits_processor: LogitsProcessorList, + stopping_criteria: StoppingCriteriaList, + generation_config: GenerationConfig, + synced_gpus: bool, + streamer: Optional["BaseStreamer"], + **model_kwargs, + ) -> Union[GenerateNonBeamOutput, torch.LongTensor]: + r""" + Generates sequences of token ids for models with a language modeling head using **contrastive search** and can + be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models. + + Parameters: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + The sequence used as a prompt for the generation. + logits_processor (`LogitsProcessorList`): + An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`] + used to modify the prediction scores of the language modeling head applied at each generation step. + stopping_criteria (`StoppingCriteriaList`): + An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`] + used to tell if the generation loop should stop. + generation_config ([`~generation.GenerationConfig`]): + The generation configuration to be used as parametrization of the decoding method. + synced_gpus (`bool`): + Whether to continue running the while loop until max_length (needed to avoid deadlocking with + `FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3). + streamer (`BaseStreamer`, *optional*): + Streamer object that will be used to stream the generated sequences. Generated tokens are passed + through `streamer.put(token_ids)` and the streamer is responsible for any further processing. + model_kwargs: + Additional model specific keyword arguments will be forwarded to the `forward` function of the model. + If model is an encoder-decoder model the kwargs should include `encoder_outputs`. + + Return: + [`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`] + or `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a + [`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and + `return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if + `model.config.is_encoder_decoder=True`. + """ + # init values + has_eos_stopping_criteria = any(hasattr(criteria, "eos_token_id") for criteria in stopping_criteria) + top_k = generation_config.top_k + penalty_alpha = generation_config.penalty_alpha + pad_token_id = generation_config._pad_token_tensor + output_attentions = generation_config.output_attentions + output_hidden_states = generation_config.output_hidden_states + output_scores = generation_config.output_scores + output_logits = generation_config.output_logits + return_dict_in_generate = generation_config.return_dict_in_generate + sequential = generation_config.low_memory + + # init attention / hidden states / scores tuples + raw_logits = () if (return_dict_in_generate and output_logits) else None + scores = () if (return_dict_in_generate and output_scores) else None + decoder_attentions = () if (return_dict_in_generate and output_attentions) else None + cross_attentions = () if (return_dict_in_generate and output_attentions) else None + decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None + + # if model is an encoder-decoder, retrieve encoder attention weights and hidden states + if return_dict_in_generate and self.config.is_encoder_decoder: + encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None + encoder_hidden_states = ( + model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None + ) + + # keep track of which sequences are already finished + batch_size = input_ids.shape[0] + unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device) + model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs) + + # Create cosine_matrix_mask based on the attention_mask + cosine_matrix_mask = torch.ones_like(input_ids, dtype=torch.long) + if self.config.is_encoder_decoder: + if "decoder_attention_mask" in model_kwargs and model_kwargs["decoder_attention_mask"] is not None: + cosine_matrix_mask = model_kwargs["decoder_attention_mask"] + else: + cosine_matrix_mask = model_kwargs["attention_mask"] + cosine_matrix_mask = cosine_matrix_mask.repeat_interleave(top_k, dim=0) + + this_peer_finished = False + + while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device): + # if the first step in the loop, encode all the prefix and obtain: (1) past_key_values; + # (2) last_hidden_states; (3) logit_for_next_step; (4) update model kwargs for the next step + if model_kwargs.get("past_key_values") is None or ( + isinstance(model_kwargs["past_key_values"], (Cache, EncoderDecoderCache)) + and model_kwargs["past_key_values"].get_seq_length() == 0 + ): + # prepare inputs + model_kwargs["use_cache"] = True + model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) + + # encode the given prefix and prepare model inputs; encoder-decoder model process the prefix and save + # the `encoder_outputs` + outputs = self( + **model_inputs, return_dict=True, output_hidden_states=True, output_attentions=output_attentions + ) + + # last decoder hidden states will be used to compute the degeneration penalty (cosine similarity with + # previous tokens) + if self.config.is_encoder_decoder: + last_hidden_states = outputs.decoder_hidden_states[-1] + else: + last_hidden_states = outputs.hidden_states[-1] + + # next logit for contrastive search to select top-k candidate tokens + # Clone is needed to avoid keeping a hanging ref to outputs.logits which may be very large for this first iteration + # (the clone itself is always small) + # .float() is needed to retain precision for later logits manipulations + logit_for_next_step = outputs.logits[:, -1, :].clone().float() + logit_for_next_step = logit_for_next_step.to(input_ids.device) + + model_kwargs = self._update_model_kwargs_for_generation( + outputs, + model_kwargs, + is_encoder_decoder=self.config.is_encoder_decoder, + ) + + if not sequential: + # Expands model inputs top_k times, for batched forward passes (akin to beam search). + _, model_kwargs = self._expand_inputs_for_generation( + expand_size=top_k, is_encoder_decoder=self.config.is_encoder_decoder, **model_kwargs + ) + + past_key_values = model_kwargs.get("past_key_values") + if past_key_values is None: + raise ValueError( + f"{self.__class__.__name__} does not support caching and therefore **can't** be used " + "for contrastive search." + ) + elif ( + not isinstance(past_key_values[0], (tuple, torch.Tensor)) + or past_key_values[0][0].shape[0] != batch_size + ): + raise ValueError( + f"{self.__class__.__name__} does not have a standard cache format and therefore **can't** be " + "used for contrastive search without further modifications." + ) + + # contrastive_search main logic start: + # contrastive search decoding consists of two steps: (1) candidate tokens recall; (2) candidate re-rank by + # degeneration penalty + processed_logit_for_next_step = logits_processor(input_ids, logit_for_next_step) + next_probs = nn.functional.softmax(processed_logit_for_next_step, dim=-1) + + top_k_probs, top_k_ids = torch.topk(next_probs, dim=-1, k=top_k) + + # Store scores, attentions and hidden_states when required + if return_dict_in_generate: + if output_logits: + raw_logits += (logit_for_next_step,) + if output_scores: + scores += (processed_logit_for_next_step,) + if output_attentions: + decoder_attentions += ( + (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,) + ) + if self.config.is_encoder_decoder: + cross_attentions += (outputs.cross_attentions,) + + if output_hidden_states: + decoder_hidden_states += ( + (outputs.decoder_hidden_states,) + if self.config.is_encoder_decoder + else (outputs.hidden_states,) + ) + + # This is needed to properly delete outputs.logits which may be very large for this first iteration + # Otherwise a reference to outputs.logits is kept all along until after the next call to self.forward() + del outputs + + if not sequential: + # Replicates the new past_key_values to match the `top_k` candidates + past = model_kwargs["past_key_values"] + # If it is a static cache, modify it in-place layer after layer to save memory + if isinstance(past, DynamicCache) or ( + isinstance(past, EncoderDecoderCache) and isinstance(past.self_attention_cache, DynamicCache) + ): + past.batch_repeat_interleave(top_k) + else: + new_key_values = [] + for layer in past: + items = [] + # item is either the key or the value matrix + for item in layer: + items.append(item.repeat_interleave(top_k, dim=0)) + new_key_values.append(tuple(items)) + + past = tuple(new_key_values) + + model_kwargs["past_key_values"] = past + + if sequential: + all_outputs = [] + for i in range(top_k): + # compute the candidate tokens by the language model and collect their hidden_states + next_model_inputs = self.prepare_inputs_for_generation(top_k_ids[:, i].view(-1, 1), **model_kwargs) + + outputs = self( + **next_model_inputs, + return_dict=True, + output_hidden_states=True, + output_attentions=output_attentions, + ) + if isinstance(outputs["past_key_values"], DynamicCache) or ( + isinstance(outputs["past_key_values"], EncoderDecoderCache) + and isinstance(outputs["past_key_values"].self_attention_cache, DynamicCache) + ): + # Remove past K-V from output since we don't need to stack later + outputs["past_key_values"] = None + # Remove last token from past K-V since we don't want to append it at this point + model_kwargs["past_key_values"].crop(-1) + + all_outputs.append(outputs) + outputs = stack_model_outputs(all_outputs, self.config.get_text_config()) + + else: + # compute the candidate tokens by the language model and collect their hidden_states + # assembles top_k_ids into batch of size k + next_model_inputs = self.prepare_inputs_for_generation(top_k_ids.view(-1, 1), **model_kwargs) + + outputs = self( + **next_model_inputs, + return_dict=True, + output_hidden_states=True, + output_attentions=output_attentions, + ) + + # This is essential to avoid having a last reference to the big past K-V and double the necessary memory + # in the next loop + del next_model_inputs + + # name is different for encoder-decoder and decoder-only models + if self.config.is_encoder_decoder: + next_hidden = outputs.decoder_hidden_states[-1] + full_hidden_states = outputs.decoder_hidden_states + else: + next_hidden = outputs.hidden_states[-1] + full_hidden_states = outputs.hidden_states + + # .float() is needed to retain precision for later logits manipulations + logits = outputs.logits[:, -1, :].float() + context_hidden = last_hidden_states.repeat_interleave(top_k, dim=0) + + # compute the degeneration penalty and re-rank the candidates based on the degeneration penalty and the + # model confidence. Keeping `selected_idx` on CPU enables multi-device contrastive search and doesn't + # introduce (noticeable) slowdowns on single-device runs. + selected_idx = _ranking_fast( + context_hidden, next_hidden, top_k_probs, cosine_matrix_mask, penalty_alpha, top_k + ) + cosine_matrix_mask = torch.cat( + [cosine_matrix_mask, cosine_matrix_mask.new_ones((cosine_matrix_mask.shape[0], 1))], dim=-1 + ) + selected_idx = selected_idx.to("cpu") + + # This will be used instead of the previous inneficient torch.stack(torch.split()) + augmented_idx = torch.tensor([x + i * top_k for i, x in enumerate(selected_idx)]) + + # prepare for the next step: (1) next token_id; (2) past_key_values; (3) last_hidden_states for computing + # the degeneration penalty; (4) logits for selecting next top-k candidates; (5) selected tokens scores + # (model confidence minus degeneration penalty); (6) decoder hidden_states + next_tokens = top_k_ids[range(len(top_k_ids)), selected_idx] + next_hidden = torch.stack(torch.split(next_hidden.squeeze(dim=1), top_k)) + next_hidden = next_hidden[range(batch_size), selected_idx, :] + last_hidden_states = torch.cat([last_hidden_states, next_hidden.unsqueeze(1)], dim=1) + + next_decoder_hidden_states = () + for layer in full_hidden_states: + layer = torch.stack(torch.split(layer, top_k))[range(batch_size), selected_idx, :] + next_decoder_hidden_states += (layer,) + + # generate past_key_values cache of only the selected token + if sequential: + next_model_input = self.prepare_inputs_for_generation( + top_k_ids[:, selected_idx].view(-1, 1), **model_kwargs + ) + + selected_outputs = self( + **next_model_input, + return_dict=True, + output_hidden_states=False, + output_attentions=False, + ) + next_past_key_values = selected_outputs["past_key_values"] + + else: + _, next_past_key_values = self._extract_past_from_model_output(outputs) + # Do it in-place layer per layer to save memory + if isinstance(next_past_key_values, DynamicCache) or ( + isinstance(next_past_key_values, EncoderDecoderCache) + and isinstance(next_past_key_values.self_attention_cache, DynamicCache) + ): + next_past_key_values.batch_select_indices(augmented_idx) + else: + new_key_values = [] + for layer in next_past_key_values: + items = [] + # item is either the key or the value matrix + for item in layer: + items.append(item[augmented_idx, ...]) + new_key_values.append(tuple(items)) + + next_past_key_values = tuple(new_key_values) + + logit_for_next_step = torch.stack(torch.split(logits, top_k))[range(batch_size), selected_idx, :] + logit_for_next_step = logit_for_next_step.to(input_ids.device) + + # Rebuilds the relevant parts of the model output for the selected token, for use in the next iteration + if self.config.is_encoder_decoder: + next_step_cross_attentions = () + next_step_decoder_attentions = () + if output_attentions: + for layer in outputs.cross_attentions: + layer = torch.stack(torch.split(layer, top_k, dim=0))[range(batch_size), selected_idx, ...] + next_step_cross_attentions += (layer,) + for layer in outputs.decoder_attentions: + layer = torch.stack(torch.split(layer, top_k, dim=0))[range(batch_size), selected_idx, ...] + next_step_decoder_attentions += (layer,) + outputs = Seq2SeqLMOutput( + past_key_values=next_past_key_values, + decoder_hidden_states=next_decoder_hidden_states, + decoder_attentions=next_step_decoder_attentions or None, + cross_attentions=next_step_cross_attentions or None, + ) + else: + next_step_attentions = () + if output_attentions: + for layer in outputs.attentions: + layer = torch.stack(torch.split(layer, top_k, dim=0))[range(batch_size), selected_idx, ...] + next_step_attentions += (layer,) + outputs = CausalLMOutputWithPast( + past_key_values=next_past_key_values, + hidden_states=next_decoder_hidden_states, + attentions=next_step_attentions or None, + ) + # contrastive_search main logic end + + # synced_gpus: don't waste resources running the code we don't need; kwargs must be updated before skipping + model_kwargs = self._update_model_kwargs_for_generation( + outputs, + model_kwargs, + is_encoder_decoder=self.config.is_encoder_decoder, + ) + if synced_gpus and this_peer_finished: + continue + + # finished sentences should have their next token be a padding token + if has_eos_stopping_criteria: + next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences) + + # update generated ids, model inputs, and length for next step + input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) + if streamer is not None: + streamer.put(next_tokens.cpu()) + + # stop when each sentence is finished + unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores) + this_peer_finished = unfinished_sequences.max() == 0 + + if streamer is not None: + streamer.end() + + if return_dict_in_generate: + # Contrastive search works by forward looking at the next token, so we need to exclude it from + # `past_key_values` to be consistent with the other decoding methods + if model_kwargs.get("past_key_values") is not None: + if isinstance(model_kwargs["past_key_values"], DynamicCache) or ( + isinstance(model_kwargs["past_key_values"], EncoderDecoderCache) + and isinstance(model_kwargs["past_key_values"].self_attention_cache, DynamicCache) + ): + model_kwargs["past_key_values"].crop(-1) + else: + past_key_values = [] + for layer in model_kwargs["past_key_values"]: + layer_past_key_values = [] + for item in layer: + layer_past_key_values.append(item[..., :-1, :]) + past_key_values.append(tuple(layer_past_key_values)) + model_kwargs["past_key_values"] = tuple(past_key_values) + + if self.config.is_encoder_decoder: + return GenerateEncoderDecoderOutput( + sequences=input_ids, + scores=scores, + logits=raw_logits, + encoder_attentions=encoder_attentions, + encoder_hidden_states=encoder_hidden_states, + decoder_attentions=decoder_attentions, + cross_attentions=cross_attentions, + decoder_hidden_states=decoder_hidden_states, + past_key_values=model_kwargs.get("past_key_values"), + ) + else: + return GenerateDecoderOnlyOutput( + sequences=input_ids, + scores=scores, + logits=raw_logits, + attentions=decoder_attentions, + hidden_states=decoder_hidden_states, + past_key_values=model_kwargs.get("past_key_values"), + ) + else: + return input_ids + + def _sample( + self, + input_ids: torch.LongTensor, + logits_processor: LogitsProcessorList, + stopping_criteria: StoppingCriteriaList, + generation_config: GenerationConfig, + synced_gpus: bool, + streamer: Optional["BaseStreamer"], + **model_kwargs, + ) -> Union[GenerateNonBeamOutput, torch.LongTensor]: + r""" + Generates sequences of token ids for models with a language modeling head using **multinomial sampling** and + can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models. + + Parameters: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + The sequence used as a prompt for the generation. + logits_processor (`LogitsProcessorList`): + An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`] + used to modify the prediction scores of the language modeling head applied at each generation step. + stopping_criteria (`StoppingCriteriaList`): + An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`] + used to tell if the generation loop should stop. + generation_config ([`~generation.GenerationConfig`]): + The generation configuration to be used as parametrization of the decoding method. + synced_gpus (`bool`): + Whether to continue running the while loop until max_length (needed to avoid deadlocking with + `FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3). + streamer (`BaseStreamer`, *optional*): + Streamer object that will be used to stream the generated sequences. Generated tokens are passed + through `streamer.put(token_ids)` and the streamer is responsible for any further processing. + model_kwargs: + Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is + an encoder-decoder model the kwargs should include `encoder_outputs`. + + Return: + [`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`] or `torch.LongTensor`: + A `torch.LongTensor` containing the generated tokens (default behaviour) or a + [`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and + `return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if + `model.config.is_encoder_decoder=True`. + """ + # init values + pad_token_id = generation_config._pad_token_tensor + output_attentions = generation_config.output_attentions + output_hidden_states = generation_config.output_hidden_states + output_scores = generation_config.output_scores + output_logits = generation_config.output_logits + return_dict_in_generate = generation_config.return_dict_in_generate + max_length = generation_config.max_length + has_eos_stopping_criteria = any(hasattr(criteria, "eos_token_id") for criteria in stopping_criteria) + do_sample = generation_config.do_sample + + # init attention / hidden states / scores tuples + scores = () if (return_dict_in_generate and output_scores) else None + raw_logits = () if (return_dict_in_generate and output_logits) else None + decoder_attentions = () if (return_dict_in_generate and output_attentions) else None + cross_attentions = () if (return_dict_in_generate and output_attentions) else None + decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None + + # if model is an encoder-decoder, retrieve encoder attention weights and hidden states + if return_dict_in_generate and self.config.is_encoder_decoder: + encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None + encoder_hidden_states = ( + model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None + ) + + # keep track of which sequences are already finished + batch_size, cur_len = input_ids.shape + this_peer_finished = False + unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device) + model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs) + + first_token_time = None + last_token_time = [] + memory_every_token = [] + + model_forward = self.__call__ + if isinstance(model_kwargs.get("past_key_values"), StaticCache): + if self.device.type == "cuda": + logger.warning_once("Using `torch.compile`.") + os.environ["TOKENIZERS_PARALLELISM"] = "0" + model_forward = self.get_compiled_call(generation_config.compile_config) + + is_prefill = True + while self._has_unfinished_sequences( + this_peer_finished, synced_gpus, device=input_ids.device, cur_len=cur_len, max_length=max_length + ): + st = time.perf_counter() + # prepare model inputs + model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) + + # prepare variable output controls (note: some models won't accept all output controls) + model_inputs.update({"output_attentions": output_attentions} if output_attentions else {}) + model_inputs.update({"output_hidden_states": output_hidden_states} if output_hidden_states else {}) + + if is_prefill: + outputs = self(**model_inputs, return_dict=True) + is_prefill = False + else: + outputs = model_forward(**model_inputs, return_dict=True) + + # synced_gpus: don't waste resources running the code we don't need; kwargs must be updated before skipping + model_kwargs = self._update_model_kwargs_for_generation( + outputs, + model_kwargs, + is_encoder_decoder=self.config.is_encoder_decoder, + ) + if synced_gpus and this_peer_finished: + continue + + # Clone is needed to avoid keeping a hanging ref to outputs.logits which may be very large for first iteration + # (the clone itself is always small) + next_token_logits = outputs.logits[:, -1, :].clone().float() + next_token_logits = next_token_logits.to(input_ids.device) + + # pre-process distribution + next_token_scores = logits_processor(input_ids, next_token_logits) + + # Store scores, attentions and hidden_states when required + if return_dict_in_generate: + if output_scores: + scores += (next_token_scores,) + if output_logits: + raw_logits += (next_token_logits,) + if output_attentions: + decoder_attentions += ( + (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,) + ) + if self.config.is_encoder_decoder: + cross_attentions += (outputs.cross_attentions,) + + if output_hidden_states: + decoder_hidden_states += ( + (outputs.decoder_hidden_states,) + if self.config.is_encoder_decoder + else (outputs.hidden_states,) + ) + + # token selection + if do_sample: + probs = nn.functional.softmax(next_token_scores, dim=-1) + # TODO (joao): this OP throws "skipping cudagraphs due to ['incompatible ops']", find solution + next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1) + else: + next_tokens = torch.argmax(next_token_scores, dim=-1) + + # finished sentences should have their next token be a padding token + if has_eos_stopping_criteria: + next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences) + + # update generated ids, model inputs, and length for next step + input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) + if streamer is not None: + streamer.put(next_tokens.cpu()) + + unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores) + this_peer_finished = unfinished_sequences.max() == 0 + cur_len += 1 + + if self.device.type == "xpu": + torch.xpu.synchronize() + memory_every_token.append(torch.xpu.memory.memory_reserved(self.device) / (1024 ** 3)) + self.peak_memory = np.max(memory_every_token) + end = time.perf_counter() + if first_token_time is None: + first_token_time = end - st + else: + last_token_time.append(end - st) + + # This is needed to properly delete outputs.logits which may be very large for first iteration + # Otherwise a reference to outputs is kept which keeps the logits alive in the next iteration + del outputs + + if self.do_print: + if self.device.type == "xpu": + print(f"=========First token cost {first_token_time:.4f} s and {memory_every_token[0]} GB=========") + else: + print(f"=========First token cost {first_token_time:.4f} s=========") + if len(last_token_time) > 1: + self.first_cost = first_token_time + self.rest_cost_mean = np.mean(last_token_time) + if self.do_print: + if self.device.type == "xpu": + print(f"=========Rest tokens cost average {self.rest_cost_mean:.4f} s ({len(last_token_time)}" + f" tokens in all) and {np.max(memory_every_token[1:])} GB=========") + if self.verbose: + print(f"Peak memory for every token: {memory_every_token}") + else: + print(f"=========Rest tokens cost average {self.rest_cost_mean:.4f} s ({len(last_token_time)}" + f" tokens in all)=========") + + if streamer is not None: + streamer.end() + + if return_dict_in_generate: + if self.config.is_encoder_decoder: + return GenerateEncoderDecoderOutput( + sequences=input_ids, + scores=scores, + logits=raw_logits, + encoder_attentions=encoder_attentions, + encoder_hidden_states=encoder_hidden_states, + decoder_attentions=decoder_attentions, + cross_attentions=cross_attentions, + decoder_hidden_states=decoder_hidden_states, + past_key_values=model_kwargs.get("past_key_values"), + ) + else: + return GenerateDecoderOnlyOutput( + sequences=input_ids, + scores=scores, + logits=raw_logits, + attentions=decoder_attentions, + hidden_states=decoder_hidden_states, + past_key_values=model_kwargs.get("past_key_values"), + ) + else: + return input_ids + + def _temporary_reorder_cache(self, past_key_values, beam_idx): + """ + Temporary function to handle the different types of cache reordering processes while we roll out `Cache`. + + TODO: standardize cache formats and make all models compatible with `Cache`. It would remove the need + for this function, with `Cache.reorder_cache` being the sole remaining code path + """ + model_class = self.__class__.__name__.lower() + # Exception 1: code path for models using the legacy cache format + if isinstance(past_key_values, (tuple, list)): + past_key_values = self._reorder_cache(past_key_values, beam_idx) + # Exception 2: models with different cache formats. These are limited to `DynamicCache` until their + # cache format is standardized, to avoid adding complexity to the codebase. + elif "gptbigcode" in model_class: + if not isinstance(past_key_values, (DynamicCache, EncoderDecoderCache)): + raise ValueError( + f"Using an unsupported cache format with {model_class}. Currently, it only supports the " + "legacy tuple format or `DynamicCache`" + ) + past_key_values = self._reorder_cache(past_key_values, beam_idx) + past_key_values = DynamicCache.from_legacy_cache(past_key_values) + # Standard code path: use the `Cache.reorder_cache` + else: + past_key_values.reorder_cache(beam_idx) + return past_key_values + + def _beam_search( + self, + input_ids: torch.LongTensor, + beam_scorer: BeamScorer, + logits_processor: LogitsProcessorList, + stopping_criteria: StoppingCriteriaList, + generation_config: GenerationConfig, + synced_gpus: bool, + **model_kwargs, + ) -> Union[GenerateBeamOutput, torch.LongTensor]: + r""" + Generates sequences of token ids for models with a language modeling head using **beam search decoding** and + can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models. + + Parameters: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + The sequence used as a prompt for the generation. + beam_scorer (`BeamScorer`): + An derived instance of [`BeamScorer`] that defines how beam hypotheses are constructed, stored and + sorted during generation. For more information, the documentation of [`BeamScorer`] should be read. + logits_processor (`LogitsProcessorList`): + An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`] + used to modify the prediction scores of the language modeling head applied at each generation step. + stopping_criteria (`StoppingCriteriaList`: + An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`] + used to tell if the generation loop should stop. + generation_config ([`~generation.GenerationConfig`]): + The generation configuration to be used as parametrization of the decoding method. + synced_gpus (`bool`): + Whether to continue running the while loop until max_length (needed to avoid deadlocking with + `FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3). + model_kwargs: + Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is + an encoder-decoder model the kwargs should include `encoder_outputs`. + + Return: + [`generation.GenerateBeamDecoderOnlyOutput`], [`~generation.GenerateBeamEncoderDecoderOutput`] or + `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a + [`~generation.GenerateBeamDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and + `return_dict_in_generate=True` or a [`~generation.GenerateBeamEncoderDecoderOutput`] if + `model.config.is_encoder_decoder=True`. + """ + # init values + pad_token_id = generation_config._pad_token_tensor + eos_token_id = generation_config._eos_token_tensor + output_attentions = generation_config.output_attentions + output_hidden_states = generation_config.output_hidden_states + output_scores = generation_config.output_scores + output_logits = generation_config.output_logits + return_dict_in_generate = generation_config.return_dict_in_generate + sequential = generation_config.low_memory + do_sample = generation_config.do_sample + + batch_size = len(beam_scorer._beam_hyps) + num_beams = beam_scorer.num_beams + + batch_beam_size, cur_len = input_ids.shape + model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs) + + if num_beams * batch_size != batch_beam_size: + raise ValueError( + f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}." + ) + + # init attention / hidden states / scores tuples + scores = () if (return_dict_in_generate and output_scores) else None + raw_logits = () if (return_dict_in_generate and output_logits) else None + beam_indices = ( + tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and output_scores) else None + ) + decoder_attentions = () if (return_dict_in_generate and output_attentions) else None + cross_attentions = () if (return_dict_in_generate and output_attentions) else None + decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None + + # if model is an encoder-decoder, retrieve encoder attention weights and hidden states + if return_dict_in_generate and self.config.is_encoder_decoder: + encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None + encoder_hidden_states = ( + model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None + ) + + # initialise score of first beam with 0 and the rest with -1e9. This makes sure that only tokens + # of the first beam are considered to avoid sampling the exact same tokens across all beams. + beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device) + beam_scores[:, 1:] = -1e9 + beam_scores = beam_scores.view((batch_size * num_beams,)) + + this_peer_finished = False + + first_token_time = None + last_token_time = [] + memory_every_token = [] + + decoder_prompt_len = input_ids.shape[-1] # record the prompt length of decoder + + while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device): + st = time.perf_counter() + model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) + + # prepare variable output controls (note: some models won't accept all output controls) + model_inputs.update({"output_attentions": output_attentions} if output_attentions else {}) + model_inputs.update({"output_hidden_states": output_hidden_states} if output_hidden_states else {}) + + # if sequential is True, split the input to batches of batch_size and run sequentially + if sequential: + if any( + model_name in self.__class__.__name__.lower() + for model_name in [ + "fsmt", + "reformer", + "ctrl", + "gpt_bigcode", + "transo_xl", + "xlnet", + "cpm", + "jamba", + ] + ): + raise RuntimeError( + f"Currently generation for {self.__class__.__name__} is not supported " + f"for `low_memory beam_search`. Please open an issue on GitHub if you need this feature." + ) + + inputs_per_sub_batches = _split_model_inputs( + model_inputs, + split_size=batch_size, + full_batch_size=batch_beam_size, + config=self.config.get_text_config(), + ) + outputs_per_sub_batch = [ + self(**inputs_per_sub_batch, return_dict=True) for inputs_per_sub_batch in inputs_per_sub_batches + ] + + outputs = stack_model_outputs(outputs_per_sub_batch, self.config.get_text_config()) + + else: # Unchanged original behavior + outputs = self(**model_inputs, return_dict=True) + + # synced_gpus: don't waste resources running the code we don't need; kwargs must be updated before skipping + model_kwargs = self._update_model_kwargs_for_generation( + outputs, + model_kwargs, + is_encoder_decoder=self.config.is_encoder_decoder, + ) + if synced_gpus and this_peer_finished: + cur_len = cur_len + 1 + continue + + # Clone is needed to avoid keeping a hanging ref to outputs.logits which may be very large for first iteration + # (the clone itself is always small) + # .float() is needed to retain precision for later logits manipulations + next_token_logits = outputs.logits[:, -1, :].clone().float() + next_token_logits = next_token_logits.to(input_ids.device) + next_token_scores = nn.functional.log_softmax( + next_token_logits, dim=-1 + ) # (batch_size * num_beams, vocab_size) + + next_token_scores_processed = logits_processor(input_ids, next_token_scores) + next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as( + next_token_scores_processed + ) + + # Store scores, attentions and hidden_states when required + if return_dict_in_generate: + if output_scores: + scores += (next_token_scores_processed,) + if output_logits: + raw_logits += (next_token_logits,) + if output_attentions: + decoder_attentions += ( + (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,) + ) + if self.config.is_encoder_decoder: + cross_attentions += (outputs.cross_attentions,) + if output_hidden_states: + decoder_hidden_states += ( + (outputs.decoder_hidden_states,) + if self.config.is_encoder_decoder + else (outputs.hidden_states,) + ) + + # reshape for beam search + vocab_size = next_token_scores.shape[-1] + next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size) + + # Beam token selection: pick 1 + eos_token_id.shape[0] next tokens for each beam so we have at least 1 + # non eos token per beam. + n_eos_tokens = eos_token_id.shape[0] if eos_token_id is not None else 0 + n_tokens_to_keep = max(2, 1 + n_eos_tokens) * num_beams + if do_sample: + probs = nn.functional.softmax(next_token_scores, dim=-1) + next_tokens = torch.multinomial(probs, num_samples=n_tokens_to_keep) + next_token_scores = torch.gather(next_token_scores, -1, next_tokens) + next_token_scores, _indices = torch.sort(next_token_scores, descending=True, dim=1) + next_tokens = torch.gather(next_tokens, -1, _indices) + else: + next_token_scores, next_tokens = torch.topk( + next_token_scores, n_tokens_to_keep, dim=1, largest=True, sorted=True + ) + + next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor") + next_tokens = next_tokens % vocab_size + + # stateless + beam_outputs = beam_scorer.process( + input_ids, + next_token_scores, + next_tokens, + next_indices, + pad_token_id=pad_token_id, + eos_token_id=eos_token_id, + beam_indices=beam_indices, + decoder_prompt_len=decoder_prompt_len, + ) + + beam_scores = beam_outputs["next_beam_scores"] + beam_next_tokens = beam_outputs["next_beam_tokens"] + beam_idx = beam_outputs["next_beam_indices"] + + input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1) + + if self.device.type == "xpu": + torch.xpu.synchronize() + memory_every_token.append(torch.xpu.memory.memory_reserved(self.device) / (1024 ** 3)) + self.peak_memory = np.max(memory_every_token) + end = time.perf_counter() + if first_token_time is None: + first_token_time = end - st + else: + last_token_time.append(end - st) + + # This is needed to properly delete outputs.logits which may be very large for first iteration + # Otherwise a reference to outputs is kept which keeps the logits alive in the next iteration + # IMPORTANT: Note that this should appear BEFORE the call to _reorder_cache() to save the maximum memory + # (that way the memory peak does not include outputs.logits) + del outputs + + if model_kwargs.get("past_key_values", None) is not None: + model_kwargs["past_key_values"] = self._temporary_reorder_cache( + model_kwargs["past_key_values"], beam_idx + ) + + if return_dict_in_generate and output_scores: + beam_indices = tuple((beam_indices[beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices)))) + + # increase cur_len + cur_len = cur_len + 1 + + if beam_scorer.is_done or all(stopping_criteria(input_ids, scores)): + this_peer_finished = True + + sequence_outputs = beam_scorer.finalize( + input_ids, + beam_scores, + next_tokens, + next_indices, + pad_token_id=pad_token_id, + eos_token_id=eos_token_id, + max_length=stopping_criteria.max_length, + beam_indices=beam_indices, + decoder_prompt_len=decoder_prompt_len, + ) + + if self.do_print: + if self.device.type == "xpu": + print(f"=========First token cost {first_token_time:.4f} s and {memory_every_token[0]} GB=========") + else: + print(f"=========First token cost {first_token_time:.4f} s=========") + if len(last_token_time) > 1: + self.first_cost = first_token_time + self.rest_cost_mean = np.mean(last_token_time) + if self.do_print: + if self.device.type == "xpu": + print(f"=========Rest tokens cost average {self.rest_cost_mean:.4f} s ({len(last_token_time)}" + f" tokens in all) and {np.max(memory_every_token[1:])} GB=========") + if self.verbose: + print(f"Peak memory for every token: {memory_every_token}") + else: + print(f"=========Rest tokens cost average {self.rest_cost_mean:.4f} s ({len(last_token_time)}" + f" tokens in all)=========") + + if return_dict_in_generate: + if not output_scores: + sequence_outputs["sequence_scores"] = None + + if self.config.is_encoder_decoder: + return GenerateBeamEncoderDecoderOutput( + sequences=sequence_outputs["sequences"], + sequences_scores=sequence_outputs["sequence_scores"], + scores=scores, + logits=raw_logits, + beam_indices=sequence_outputs["beam_indices"], + encoder_attentions=encoder_attentions, + encoder_hidden_states=encoder_hidden_states, + decoder_attentions=decoder_attentions, + cross_attentions=cross_attentions, + decoder_hidden_states=decoder_hidden_states, + past_key_values=model_kwargs.get("past_key_values"), + ) + else: + return GenerateBeamDecoderOnlyOutput( + sequences=sequence_outputs["sequences"], + sequences_scores=sequence_outputs["sequence_scores"], + scores=scores, + logits=raw_logits, + beam_indices=sequence_outputs["beam_indices"], + attentions=decoder_attentions, + hidden_states=decoder_hidden_states, + past_key_values=model_kwargs.get("past_key_values"), + ) + else: + return sequence_outputs["sequences"] + + def _group_beam_search( + self, + input_ids: torch.LongTensor, + beam_scorer: BeamScorer, + logits_processor: LogitsProcessorList, + stopping_criteria: StoppingCriteriaList, + generation_config: GenerationConfig, + synced_gpus: bool, + **model_kwargs, + ): + r""" + Generates sequences of token ids for models with a language modeling head using **diverse beam search + decoding** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models. + + Parameters: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + The sequence used as a prompt for the generation. + beam_scorer (`BeamScorer`): + An derived instance of [`BeamScorer`] that defines how beam hypotheses are constructed, stored and + sorted during generation. For more information, the documentation of [`BeamScorer`] should be read. + logits_processor (`LogitsProcessorList`): + An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`] + used to modify the prediction scores of the language modeling head applied at each generation step. + stopping_criteria (`StoppingCriteriaList`): + An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`] + used to tell if the generation loop should stop. + generation_config ([`~generation.GenerationConfig`]): + The generation configuration to be used as parametrization of the decoding method. + synced_gpus (`bool`): + Whether to continue running the while loop until max_length (needed to avoid deadlocking with + `FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3). + model_kwargs: + Additional model specific kwargs that will be forwarded to the `forward` function of the model. If + model is an encoder-decoder model the kwargs should include `encoder_outputs`. + + Return: + [`~generation.GenerateBeamDecoderOnlyOutput`], [`~generation.GenerateBeamEncoderDecoderOutput`] or + `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a + [`~generation.GenerateBeamDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and + `return_dict_in_generate=True` or a [`~generation.GenerateBeamEncoderDecoderOutput`] if + `model.config.is_encoder_decoder=True`. + """ + # init values + pad_token_id = generation_config._pad_token_tensor + eos_token_id = generation_config._eos_token_tensor + output_attentions = generation_config.output_attentions + output_hidden_states = generation_config.output_hidden_states + output_scores = generation_config.output_scores + output_logits = generation_config.output_logits + return_dict_in_generate = generation_config.return_dict_in_generate + + num_beams = beam_scorer.num_beams + num_beam_groups = beam_scorer.num_beam_groups + num_sub_beams = num_beams // num_beam_groups + batch_size = len(beam_scorer._beam_hyps) // num_beam_groups + device = input_ids.device + + batch_beam_size, cur_len = input_ids.shape + model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs) + + if return_dict_in_generate and output_scores: + beam_indices = [tuple(() for _ in range(num_sub_beams * batch_size)) for _ in range(num_beam_groups)] + else: + beam_indices = None + + if num_beams * batch_size != batch_beam_size: + raise ValueError( + f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}." + ) + + # init attention / hidden states / scores tuples + scores = () if (return_dict_in_generate and output_scores) else None + raw_logits = () if (return_dict_in_generate and output_logits) else None + decoder_attentions = () if (return_dict_in_generate and output_attentions) else None + cross_attentions = () if (return_dict_in_generate and output_attentions) else None + decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None + + # if model is an encoder-decoder, retrieve encoder attention weights and hidden states + if return_dict_in_generate and self.config.is_encoder_decoder: + encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None + encoder_hidden_states = ( + model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None + ) + + # initialise score of first beam of each group with 0 and the rest with -1e9. This ensures that the beams in + # the same group don't produce same tokens every time. + beam_scores = torch.full((batch_size, num_beams), -1e9, dtype=torch.float, device=device) + beam_scores[:, ::num_sub_beams] = 0 + beam_scores = beam_scores.view((batch_size * num_beams,)) + + this_peer_finished = False + + decoder_prompt_len = input_ids.shape[-1] # record the prompt length of decoder + while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device): + # predicted tokens in cur_len step + current_tokens = torch.zeros(batch_size * num_beams, dtype=input_ids.dtype, device=device) + + # indices which will form the beams in the next time step + reordering_indices = torch.zeros(batch_size * num_beams, dtype=torch.long, device=device) + + # do one decoder step on all beams of all sentences in batch + model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) + + # prepare variable output controls (note: some models won't accept all output controls) + model_inputs.update({"output_attentions": output_attentions} if output_attentions else {}) + model_inputs.update({"output_hidden_states": output_hidden_states} if output_hidden_states else {}) + + outputs = self(**model_inputs, return_dict=True) + + # synced_gpus: don't waste resources running the code we don't need; kwargs must be updated before skipping + model_kwargs = self._update_model_kwargs_for_generation( + outputs, + model_kwargs, + is_encoder_decoder=self.config.is_encoder_decoder, + ) + if synced_gpus and this_peer_finished: + cur_len = cur_len + 1 + continue + + if output_scores: + processed_score = torch.zeros_like(outputs.logits[:, -1, :]) + if output_logits: + # Clone is needed to avoid keeping a hanging ref to outputs.logits which may be very large for first iteration + # (the clone itself is always small) + raw_logit_score = outputs.logits[:, -1, :].clone() + raw_logit_score = raw_logit_score.to(input_ids.device) + + for beam_group_idx in range(num_beam_groups): + group_start_idx = beam_group_idx * num_sub_beams + group_end_idx = min(group_start_idx + num_sub_beams, num_beams) + group_size = group_end_idx - group_start_idx + + # indices of beams of current group among all sentences in batch + batch_group_indices = [] + + for batch_idx in range(batch_size): + batch_group_indices.extend( + [batch_idx * num_beams + idx for idx in range(group_start_idx, group_end_idx)] + ) + group_input_ids = input_ids[batch_group_indices] + + # select outputs of beams of current group only + # No need to clone() the logits here as they will not retain outputs.logits at the end of the loop + # .float() is needed to retain precision for later logits manipulations + next_token_logits = outputs.logits[batch_group_indices, -1, :].float() + next_token_logits = next_token_logits.to(input_ids.device) + + next_token_scores = nn.functional.log_softmax( + next_token_logits, dim=-1 + ) # (batch_size * group_size, vocab_size) + vocab_size = next_token_scores.shape[-1] + + next_token_scores_processed = logits_processor( + group_input_ids, next_token_scores, current_tokens=current_tokens, beam_group_idx=beam_group_idx + ) + next_token_scores = next_token_scores_processed + beam_scores[batch_group_indices].unsqueeze(-1) + next_token_scores = next_token_scores.expand_as(next_token_scores_processed) + + if output_scores: + processed_score[batch_group_indices] = next_token_scores_processed + + # reshape for beam search + next_token_scores = next_token_scores.view(batch_size, group_size * vocab_size) + + # Sample 1 + len(eos_token_id) next tokens for each beam so we have at least 1 non eos token per beam. + n_eos_tokens = eos_token_id.shape[0] if eos_token_id is not None else 0 + next_token_scores, next_tokens = torch.topk( + next_token_scores, max(2, 1 + n_eos_tokens) * group_size, dim=1, largest=True, sorted=True + ) + + next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor") + next_tokens = next_tokens % vocab_size + + # stateless + process_beam_indices = sum(beam_indices, ()) if beam_indices is not None else None + beam_outputs = beam_scorer.process( + group_input_ids, + next_token_scores, + next_tokens, + next_indices, + pad_token_id=pad_token_id, + eos_token_id=eos_token_id, + beam_indices=process_beam_indices, + group_index=beam_group_idx, + decoder_prompt_len=decoder_prompt_len, + ) + beam_scores[batch_group_indices] = beam_outputs["next_beam_scores"] + beam_next_tokens = beam_outputs["next_beam_tokens"] + beam_idx = beam_outputs["next_beam_indices"] + + if return_dict_in_generate and output_scores: + beam_indices[beam_group_idx] = tuple( + beam_indices[beam_group_idx][beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices[0])) + ) + + input_ids[batch_group_indices] = group_input_ids[beam_idx] + group_input_ids = torch.cat([group_input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1) + current_tokens[batch_group_indices] = group_input_ids[:, -1] + + # (beam_idx // group_size) -> batch_idx + # (beam_idx % group_size) -> offset of idx inside the group + reordering_indices[batch_group_indices] = ( + num_beams * torch.div(beam_idx, group_size, rounding_mode="floor") + + group_start_idx + + (beam_idx % group_size) + ) + + # Store scores, attentions and hidden_states when required + if return_dict_in_generate: + if output_scores: + scores += (processed_score,) + if output_logits: + raw_logits += (raw_logit_score,) + if output_attentions: + decoder_attentions += ( + (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,) + ) + if self.config.is_encoder_decoder: + cross_attentions += (outputs.cross_attentions,) + + if output_hidden_states: + decoder_hidden_states += ( + (outputs.decoder_hidden_states,) + if self.config.is_encoder_decoder + else (outputs.hidden_states,) + ) + + input_ids = torch.cat([input_ids, current_tokens.unsqueeze(-1)], dim=-1) + + # This is needed to properly delete outputs.logits which may be very large for first iteration + # Otherwise a reference to outputs is kept which keeps the logits alive in the next iteration + # IMPORTANT: Note that this should appear BEFORE the call to _reorder_cache() to save the maximum memory + # (that way the memory peak does not include outputs.logits) + del outputs + + if model_kwargs.get("past_key_values", None) is not None: + model_kwargs["past_key_values"] = self._temporary_reorder_cache( + model_kwargs["past_key_values"], reordering_indices + ) + + # increase cur_len + cur_len = cur_len + 1 + + if beam_scorer.is_done or all(stopping_criteria(input_ids, scores)): + this_peer_finished = True + + final_beam_indices = sum(beam_indices, ()) if beam_indices is not None else None + sequence_outputs = beam_scorer.finalize( + input_ids, + beam_scores, + next_tokens, + next_indices, + pad_token_id=pad_token_id, + eos_token_id=eos_token_id, + max_length=stopping_criteria.max_length, + beam_indices=final_beam_indices, + decoder_prompt_len=decoder_prompt_len, + ) + + if return_dict_in_generate: + if not output_scores: + sequence_outputs["sequence_scores"] = None + + if self.config.is_encoder_decoder: + return GenerateBeamEncoderDecoderOutput( + sequences=sequence_outputs["sequences"], + sequences_scores=sequence_outputs["sequence_scores"], + scores=scores, + logits=raw_logits, + beam_indices=sequence_outputs["beam_indices"], + encoder_attentions=encoder_attentions, + encoder_hidden_states=encoder_hidden_states, + decoder_attentions=decoder_attentions, + cross_attentions=cross_attentions, + decoder_hidden_states=decoder_hidden_states, + past_key_values=model_kwargs.get("past_key_values"), + ) + else: + return GenerateBeamDecoderOnlyOutput( + sequences=sequence_outputs["sequences"], + sequences_scores=sequence_outputs["sequence_scores"], + scores=scores, + logits=raw_logits, + beam_indices=sequence_outputs["beam_indices"], + attentions=decoder_attentions, + hidden_states=decoder_hidden_states, + past_key_values=model_kwargs.get("past_key_values"), + ) + else: + return sequence_outputs["sequences"] + + def _constrained_beam_search( + self, + input_ids: torch.LongTensor, + constrained_beam_scorer: ConstrainedBeamSearchScorer, + logits_processor: LogitsProcessorList, + stopping_criteria: StoppingCriteriaList, + generation_config: GenerationConfig, + synced_gpus: bool, + **model_kwargs, + ) -> Union[GenerateBeamOutput, torch.LongTensor]: + r""" + Generates sequences of token ids for models with a language modeling head using **constrained beam search + decoding** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models. + + Parameters: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + The sequence used as a prompt for the generation. + constrained_beam_scorer (`ConstrainedBeamSearchScorer`): + A derived instance of [`BeamScorer`] that defines how beam hypotheses are constructed, stored and + sorted during generation, while satisfying a list of positive constraints. For more information, the + documentation of [`ConstrainedBeamSearchScorer`] should be read. + logits_processor (`LogitsProcessorList`): + An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`] + used to modify the prediction scores of the language modeling head applied at each generation step. + stopping_criteria (`StoppingCriteriaList`): + An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`] + used to tell if the generation loop should stop. + generation_config ([`~generation.GenerationConfig`]): + The generation configuration to be used as parametrization of the decoding method. + synced_gpus (`bool`): + Whether to continue running the while loop until max_length (needed to avoid deadlocking with + `FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3). + model_kwargs: + Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is + an encoder-decoder model the kwargs should include `encoder_outputs`. + + Return: + [`~generation.GenerateBeamDecoderOnlyOutput`], [`~generation.GenerateBeamEncoderDecoderOutput`] or + `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a + [`~generation.GenerateBeamDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and + `return_dict_in_generate=True` or a [`~generation.GenerateBeamEncoderDecoderOutput`] if + `model.config.is_encoder_decoder=True`. + """ + # init values + pad_token_id = generation_config._pad_token_tensor + eos_token_id = generation_config._eos_token_tensor + output_attentions = generation_config.output_attentions + output_hidden_states = generation_config.output_hidden_states + output_scores = generation_config.output_scores + output_logits = generation_config.output_logits + return_dict_in_generate = generation_config.return_dict_in_generate + + batch_size = len(constrained_beam_scorer._beam_hyps) + num_beams = constrained_beam_scorer.num_beams + + batch_beam_size, cur_len = input_ids.shape + model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs) + + if num_beams * batch_size != batch_beam_size: + raise ValueError( + f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}." + ) + + # init attention / hidden states / scores tuples + scores = () if (return_dict_in_generate and output_scores) else None + raw_logits = () if (return_dict_in_generate and output_logits) else None + beam_indices = ( + tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and output_scores) else None + ) + decoder_attentions = () if (return_dict_in_generate and output_attentions) else None + cross_attentions = () if (return_dict_in_generate and output_attentions) else None + decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None + + # if model is an encoder-decoder, retrieve encoder attention weights and hidden states + if return_dict_in_generate and self.config.is_encoder_decoder: + encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None + encoder_hidden_states = ( + model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None + ) + + # initialise score of first beam with 0 and the rest with -1e9. This makes sure that only tokens + # of the first beam are considered to avoid sampling the exact same tokens across all beams. + beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device) + beam_scores[:, 1:] = -1e9 + beam_scores = beam_scores.view((batch_size * num_beams,)) + + this_peer_finished = False + + decoder_prompt_len = input_ids.shape[-1] # record the prompt length of decoder + while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device): + model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) + + # prepare variable output controls (note: some models won't accept all output controls) + model_inputs.update({"output_attentions": output_attentions} if output_attentions else {}) + model_inputs.update({"output_hidden_states": output_hidden_states} if output_hidden_states else {}) + + outputs = self(**model_inputs, return_dict=True) + + # synced_gpus: don't waste resources running the code we don't need; kwargs must be updated before skipping + model_kwargs = self._update_model_kwargs_for_generation( + outputs, + model_kwargs, + is_encoder_decoder=self.config.is_encoder_decoder, + ) + if synced_gpus and this_peer_finished: + cur_len = cur_len + 1 + continue + + # Clone is needed to avoid keeping a hanging ref to outputs.logits which may be very large for first iteration + # (the clone itself is always small) + # .float() is needed to retain precision for later logits manipulations + next_token_logits = outputs.logits[:, -1, :].clone().float() + next_token_logits = next_token_logits.to(input_ids.device) + next_token_scores = nn.functional.log_softmax( + next_token_logits, dim=-1 + ) # (batch_size * num_beams, vocab_size) + + next_token_scores_processed = logits_processor(input_ids, next_token_scores) + + next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as( + next_token_scores_processed + ) + + scores_for_all_vocab = next_token_scores.clone() + + # Store scores, attentions and hidden_states when required + if return_dict_in_generate: + if output_scores: + scores += (next_token_scores,) + if output_logits: + raw_logits += (next_token_logits,) + if output_attentions: + decoder_attentions += ( + (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,) + ) + if self.config.is_encoder_decoder: + cross_attentions += (outputs.cross_attentions,) + + if output_hidden_states: + decoder_hidden_states += ( + (outputs.decoder_hidden_states,) + if self.config.is_encoder_decoder + else (outputs.hidden_states,) + ) + + # reshape for beam search + vocab_size = next_token_scores.shape[-1] + next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size) + + # Sample 1 + len(eos_token_id) next tokens for each beam so we have at least 1 non eos token per beam. + n_eos_tokens = eos_token_id.shape[0] if eos_token_id is not None else 0 + next_token_scores, next_tokens = torch.topk( + next_token_scores, max(2, 1 + n_eos_tokens) * num_beams, dim=1, largest=True, sorted=True + ) + + next_indices = (next_tokens / vocab_size).long() + next_tokens = next_tokens % vocab_size + + # stateless + beam_outputs = constrained_beam_scorer.process( + input_ids, + next_token_scores, + next_tokens, + next_indices, + scores_for_all_vocab, + pad_token_id=pad_token_id, + eos_token_id=eos_token_id, + beam_indices=beam_indices, + decoder_prompt_len=decoder_prompt_len, + ) + beam_scores = beam_outputs["next_beam_scores"] + beam_next_tokens = beam_outputs["next_beam_tokens"] + beam_idx = beam_outputs["next_beam_indices"] + + input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1) + + # This is needed to properly delete outputs.logits which may be very large for first iteration + # Otherwise a reference to outputs is kept which keeps the logits alive in the next iteration + # IMPORTANT: Note that this should appear BEFORE the call to _reorder_cache() to save the maximum memory + # (that way the memory peak does not include outputs.logits) + del outputs + + if model_kwargs.get("past_key_values", None) is not None: + model_kwargs["past_key_values"] = self._temporary_reorder_cache( + model_kwargs["past_key_values"], beam_idx + ) + + if return_dict_in_generate and output_scores: + beam_indices = tuple((beam_indices[beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices)))) + + # increase cur_len + cur_len = cur_len + 1 + + if constrained_beam_scorer.is_done or all(stopping_criteria(input_ids, scores)): + this_peer_finished = True + + sequence_outputs = constrained_beam_scorer.finalize( + input_ids, + beam_scores, + next_tokens, + next_indices, + pad_token_id=pad_token_id, + eos_token_id=eos_token_id, + max_length=stopping_criteria.max_length, + beam_indices=beam_indices, + decoder_prompt_len=decoder_prompt_len, + ) + + if return_dict_in_generate: + if not output_scores: + sequence_outputs["sequence_scores"] = None + if self.config.is_encoder_decoder: + return GenerateBeamEncoderDecoderOutput( + sequences=sequence_outputs["sequences"], + sequences_scores=sequence_outputs["sequence_scores"], + scores=scores, + logits=raw_logits, + beam_indices=sequence_outputs["beam_indices"], + encoder_attentions=encoder_attentions, + encoder_hidden_states=encoder_hidden_states, + decoder_attentions=decoder_attentions, + cross_attentions=cross_attentions, + decoder_hidden_states=decoder_hidden_states, + past_key_values=model_kwargs.get("past_key_values"), + ) + else: + return GenerateBeamDecoderOnlyOutput( + sequences=sequence_outputs["sequences"], + sequences_scores=sequence_outputs["sequence_scores"], + scores=scores, + logits=raw_logits, + beam_indices=sequence_outputs["beam_indices"], + attentions=decoder_attentions, + hidden_states=decoder_hidden_states, + past_key_values=model_kwargs.get("past_key_values"), + ) + else: + return sequence_outputs["sequences"] + + def _assisted_decoding( + self, + input_ids: torch.LongTensor, + candidate_generator: CandidateGenerator, + logits_processor: LogitsProcessorList, + stopping_criteria: StoppingCriteriaList, + generation_config: GenerationConfig, + synced_gpus: bool, + streamer: Optional["BaseStreamer"], + **model_kwargs, + ) -> Union[GenerateNonBeamOutput, torch.LongTensor]: + r""" + Generates sequences of token ids for models with a language modeling head using **greedy decoding** or + **sample** (depending on `do_sample`), assisted by candidate sequences. Assisted generation is an example of a + candidate decoding strategy. Can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text + models. + + Parameters: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + The sequence used as a prompt for the generation. + candidate_generator (`CandidateGenerator`): + A derived instance of [`CandidateGenerator`] that defines how candidate sequences are generated. For + more information, the documentation of [`CandidateGenerator`] should be read. + logits_processor (`LogitsProcessorList`): + An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`] + used to modify the prediction scores of the language modeling head applied at each generation step. + stopping_criteria (`StoppingCriteriaList`): + An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`] + used to tell if the generation loop should stop. + generation_config ([`~generation.GenerationConfig`]): + The generation configuration to be used as parametrization of the decoding method. + synced_gpus (`bool`): + Whether to continue running the while loop until max_length (needed to avoid deadlocking with + `FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3). + streamer (`BaseStreamer`, *optional*): + Streamer object that will be used to stream the generated sequences. Generated tokens are passed + through `streamer.put(token_ids)` and the streamer is responsible for any further processing. + model_kwargs: + Additional model specific keyword arguments will be forwarded to the `forward` function of the model. + If model is an encoder-decoder model the kwargs should include `encoder_outputs`. + + Return: + [`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`] or + `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a + [`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and + `return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if + `model.config.is_encoder_decoder=True`. + """ + # init values + do_sample = generation_config.do_sample + output_attentions = generation_config.output_attentions + output_hidden_states = generation_config.output_hidden_states + output_scores = generation_config.output_scores + output_logits = generation_config.output_logits + return_dict_in_generate = generation_config.return_dict_in_generate + + # init attention / hidden states / scores tuples + scores = () if (return_dict_in_generate and output_scores) else None + raw_logits = () if (return_dict_in_generate and output_logits) else None + decoder_attentions = () if (return_dict_in_generate and output_attentions) else None + cross_attentions = () if (return_dict_in_generate and output_attentions) else None + decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None + + # if model is an encoder-decoder, retrieve encoder attention weights and hidden states + if return_dict_in_generate and self.config.is_encoder_decoder: + encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None + encoder_hidden_states = ( + model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None + ) + + # keep track of which sequences are already finished + batch_size = input_ids.shape[0] + unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device) + model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs) + + this_peer_finished = False + is_first_iteration = True # to preserve the same API in the output as other generation methods + while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device): + cur_len = input_ids.shape[-1] + + # 1. Fetch candidate sequences from a `CandidateGenerator` + candidate_input_ids, candidate_logits = candidate_generator.get_candidates(input_ids) + + if candidate_logits is not None: + candidate_logits = candidate_logits.to(self.device) + + candidate_length = candidate_input_ids.shape[1] - input_ids.shape[1] + is_done_candidate = stopping_criteria(candidate_input_ids, None) + + # 2. Use the original model to obtain the next token logits given the candidate sequence. We obtain + # `candidate_length + 1` relevant logits from this process: in the event that all candidates are correct, + # we use this forward pass to also pick the subsequent logits in the original model. + + # 2.1. Prepare the model inputs + candidate_kwargs = copy.copy(model_kwargs) + candidate_kwargs = _prepare_attention_mask( + candidate_kwargs, candidate_input_ids.shape[1], self.config.is_encoder_decoder + ) + candidate_kwargs = _prepare_token_type_ids(candidate_kwargs, candidate_input_ids.shape[1]) + if "cache_position" in candidate_kwargs: + candidate_kwargs["cache_position"] = torch.cat( + ( + candidate_kwargs["cache_position"], + torch.arange(cur_len, cur_len + candidate_length, device=input_ids.device, dtype=torch.long), + ), + dim=0, + ) + + model_inputs = self.prepare_inputs_for_generation(candidate_input_ids, **candidate_kwargs) + if "num_logits_to_keep" in model_inputs: + model_inputs["num_logits_to_keep"] = candidate_length + 1 + + # 2.2. Run a forward pass on the candidate sequence + # prepare variable output controls (note: some models won't accept all output controls) + model_inputs.update({"output_attentions": output_attentions} if output_attentions else {}) + model_inputs.update({"output_hidden_states": output_hidden_states} if output_hidden_states else {}) + + outputs = self(**model_inputs) + + # 2.3. Process the new logits + # .float() is needed to retain precision for later logits manipulations + new_logits = outputs.logits[:, -candidate_length - 1 :].float() # excludes the input prompt if present + new_logits = new_logits.to(input_ids.device) + next_token_logits = new_logits.clone() + if len(logits_processor) > 0: + for i in range(candidate_length + 1): + new_logits[:, i, :] = logits_processor(candidate_input_ids[:, : cur_len + i], new_logits[:, i, :]) + + # 3. Select the accepted tokens. There are two possible cases: + # Case 1: `do_sample=True` and we have logits for the candidates (originally from speculative decoding) + # 👉 Apply algorithm 1 from the speculative decoding paper (https://arxiv.org/pdf/2211.17192.pdf). + if do_sample and candidate_logits is not None: + valid_tokens, n_matches = _speculative_sampling( + candidate_input_ids, + candidate_logits, + candidate_length, + new_logits, + is_done_candidate, + ) + + # Case 2: all other cases (originally from assisted generation) 👉 Compare the tokens selected from the + # original model logits with the candidate tokens. We can keep the candidate tokens until the first + # mismatch, or until the max length is reached. + else: + if do_sample: + probs = new_logits.softmax(dim=-1) + selected_tokens = torch.multinomial(probs[0, :, :], num_samples=1).squeeze(1)[None, :] + else: + selected_tokens = new_logits.argmax(dim=-1) + + candidate_new_tokens = candidate_input_ids[:, cur_len:] + n_matches = ((~(candidate_new_tokens == selected_tokens[:, :-1])).cumsum(dim=-1) < 1).sum() + + # Ensure we don't generate beyond max_len or an EOS token + if is_done_candidate and n_matches == candidate_length: + n_matches -= 1 + valid_tokens = selected_tokens[:, : n_matches + 1] + + # 4. Update variables according to the number of matching assistant tokens. Remember: the token generated + # by the model after the last candidate match is also valid, as it is generated from a correct sequence. + # Because of this last token, assisted generation search reduces to a normal greedy search/sample if there + # is no match. + + # 4.1. Get the valid continuation, after the matching tokens + input_ids = torch.cat((input_ids, valid_tokens), dim=-1) + if streamer is not None: + streamer.put(valid_tokens.cpu()) + new_cur_len = input_ids.shape[-1] + + # 4.2. Discard past key values relative to unused assistant tokens + new_cache_size = new_cur_len - 1 + outputs.past_key_values = _crop_past_key_values(self, outputs.past_key_values, new_cache_size) + + # 5. Update the candidate generation strategy if needed + candidate_generator.update_candidate_strategy(input_ids, new_logits, n_matches) + + # synced_gpus: don't waste resources running the code we don't need; kwargs must be updated before skipping + model_kwargs = self._update_model_kwargs_for_generation( + outputs, + model_kwargs, + is_encoder_decoder=self.config.is_encoder_decoder, + num_new_tokens=n_matches + 1, + ) + if synced_gpus and this_peer_finished: + continue + + # Store scores, attentions and hidden_states when required + # Assistant: modified to append one tuple element per token, as in the other generation methods. + if return_dict_in_generate: + newly_added_length = n_matches + 1 + if output_scores: + scores += tuple(new_logits[:, i, :] for i in range(newly_added_length)) + if output_logits: + raw_logits += tuple(next_token_logits[:, i, :] for i in range(newly_added_length)) + + newly_added_length = new_cur_len if is_first_iteration else newly_added_length + if output_attentions: + if self.config.is_encoder_decoder: + cross_attentions = _split_model_outputs( + cross_attentions, outputs.cross_attentions, cur_len, newly_added_length + ) + decoder_attentions = _split_model_outputs( + decoder_attentions, + outputs.decoder_attentions, + cur_len, + newly_added_length, + is_decoder_attention=True, + ) + # some (V)LLMs have hard requirement on SDPA and thus never return attn + elif outputs.attentions[0] is not None: + decoder_attentions = _split_model_outputs( + decoder_attentions, + outputs.attentions, + cur_len, + newly_added_length, + is_decoder_attention=True, + ) + if output_hidden_states: + if self.config.is_encoder_decoder: + decoder_hidden_states = _split_model_outputs( + decoder_hidden_states, outputs.decoder_hidden_states, cur_len, newly_added_length + ) + else: + decoder_hidden_states = _split_model_outputs( + decoder_hidden_states, outputs.hidden_states, cur_len, newly_added_length + ) + + unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores) + this_peer_finished = unfinished_sequences.max() == 0 + is_first_iteration = False + + if streamer is not None: + streamer.end() + + if ( + hasattr(candidate_generator, "assistant_model") + and candidate_generator.assistant_model.generation_config.num_assistant_tokens_schedule == "heuristic" + ): + candidate_generator.assistant_model.generation_config.num_assistant_tokens = ( + candidate_generator.num_assistant_tokens + ) + if return_dict_in_generate: + if self.config.is_encoder_decoder: + return GenerateEncoderDecoderOutput( + sequences=input_ids, + scores=scores, + logits=raw_logits, + encoder_attentions=encoder_attentions, + encoder_hidden_states=encoder_hidden_states, + decoder_attentions=decoder_attentions, + cross_attentions=cross_attentions, + decoder_hidden_states=decoder_hidden_states, + past_key_values=model_kwargs.get("past_key_values"), + ) + else: + return GenerateDecoderOnlyOutput( + sequences=input_ids, + scores=scores, + logits=raw_logits, + attentions=decoder_attentions, + hidden_states=decoder_hidden_states, + past_key_values=model_kwargs.get("past_key_values"), + ) + else: + return input_ids + + +def _speculative_sampling( + candidate_input_ids, + candidate_logits, + candidate_length, + new_logits, + is_done_candidate, +): + """ + Applies sampling as in the speculative decoding paper (https://arxiv.org/pdf/2211.17192.pdf, algorithm 1). Returns + the selected tokens, as well as the number of candidate matches. + + NOTE: Unless otherwise stated, the variable names match those in the paper. + """ + new_candidate_input_ids = candidate_input_ids[:, -candidate_length:] + # Gets the probabilities from the logits. q_i and p_i denote the assistant and model probabilities of the tokens + # selected by the assistant, respectively. + q = candidate_logits.softmax(dim=-1) + q_i = q[:, torch.arange(candidate_length), new_candidate_input_ids].squeeze(0, 1) + p = new_logits.softmax(dim=-1) + p_i = p[:, torch.arange(candidate_length), new_candidate_input_ids].squeeze(0, 1) + probability_ratio = p_i / q_i + + # When probability_ratio > 1 (i.e. q_i(x) < p_i(x), or "assistant probability of the candidate token is smaller + # than the model probability for the same token"), keep the token. Otherwise reject with p = 1 - probability_ratio + # (= keep with p = probability_ratio). Keep all the tokens until the first rejection + r_i = torch.rand_like(probability_ratio) + is_accepted = r_i <= probability_ratio + n_matches = ((~is_accepted).cumsum(dim=-1) < 1).sum() # this is `n` in algorithm 1 + + # Ensure we don't generate beyond max_len or an EOS token (not in algorithm 1, but needed for correct behavior) + if is_done_candidate and n_matches == candidate_length: + # Output length is assumed to be `n_matches + 1`. Since we won't generate another token with the target model + # due to acceptance on EOS we fix `n_matches` + n_matches -= 1 + valid_tokens = new_candidate_input_ids[:, : n_matches + 1] + else: + # Next token selection: if there is a rejection, adjust the distribution from the main model before sampling. + gamma = candidate_logits.shape[1] + p_n_plus_1 = p[:, n_matches, :] + if n_matches < gamma: + q_n_plus_1 = q[:, n_matches, :] + p_prime = torch.clamp((p_n_plus_1 - q_n_plus_1), min=0) + p_prime.div_(p_prime.sum()) + else: + p_prime = p_n_plus_1 + t = torch.multinomial(p_prime, num_samples=1).squeeze(1)[None, :] + + # The selected tokens include the matches (if any) plus the next sampled tokens + if n_matches > 0: + valid_tokens = torch.cat((new_candidate_input_ids[:, :n_matches], t), dim=-1) + else: + valid_tokens = t + + return valid_tokens, n_matches + + +def _split_model_outputs(outputs, new_outputs, cur_len, added_len, is_decoder_attention=False): + """ + Given the (decoder/cross attentions)/(decoder hidden states) for multiple generated tokens, splits it into a tuple + where each member corresponds to a single generated token. + """ + # Retrocompatibility: in our generation functions, the first iteration includes the attention/hidden states for the + # prompt. + if len(outputs) == 0: + new_tuple = () + for layer in new_outputs: + last_dim_size = cur_len if is_decoder_attention else layer.shape[-1] + new_tuple += (layer[..., :cur_len, :last_dim_size],) + outputs += (new_tuple,) + # The first iteration contains the prompt + 1 generated token, let's update the length variables accordingly + cur_len += 1 + added_len -= cur_len + + for i in range(added_len): + new_tuple = () + for layer in new_outputs: + last_dim_size = cur_len + i if is_decoder_attention else layer.shape[-1] + new_tuple += (layer[..., i : i + 1, :last_dim_size],) + outputs += (new_tuple,) + return outputs + + +def _ranking_fast( + context_hidden: torch.FloatTensor, + next_hidden: torch.FloatTensor, + next_top_k_probs: torch.FloatTensor, + cosine_matrix_mask: torch.LongTensor, + alpha: float, + beam_width: int, +) -> torch.FloatTensor: + """ + Reranks the top_k candidates based on a degeneration penalty (cosine similarity with previous tokens), as described + in the paper "A Contrastive Framework for Neural Text Generation". Returns the index of the best candidate for each + row in the batch. + """ + norm_context_hidden = context_hidden / context_hidden.norm(dim=2, keepdim=True) + norm_next_hidden = next_hidden / next_hidden.norm(dim=2, keepdim=True) + cosine_matrix = torch.matmul(norm_context_hidden, norm_next_hidden.transpose(1, 2)).squeeze(-1) # [B*K, S] + + # Penalize cosine_matrix based on the cosine_matrix_mask (ignore padding positions) + # Using a large negative value for masked positions + cosine_matrix_mask = cosine_matrix_mask.to(dtype=cosine_matrix.dtype) + cosine_matrix_mask = (1 - cosine_matrix_mask) * torch.finfo(cosine_matrix.dtype).min + cosine_matrix = cosine_matrix + cosine_matrix_mask + + degeneration_penalty, _ = torch.max(cosine_matrix, dim=-1) # [B*K] + next_top_k_probs = next_top_k_probs.view(-1) # [B*K] + contrastive_score = (1.0 - alpha) * next_top_k_probs - alpha * degeneration_penalty + contrastive_score = torch.stack(torch.split(contrastive_score, beam_width)) # [B, K] + _, selected_idx = contrastive_score.max(dim=-1) # [B] + return selected_idx + + +def _split(data, full_batch_size: int, num_hidden_layers: int, split_size: int = None): + """ + Takes care of three cases: + 1. data is a tensor: e.g. last_hidden_state, pooler_output etc. split them on the batch_size dim + 2. data is a tuple: e.g. hidden_states, attentions etc. Keep the tuple as it is and split each tensor in it and + return a list of tuples + 3. data is a tuple of tuples, e.g. past_key_values. Keep the tuple as it is and split each tuple in it and + return a list of tuples of tuples + (see documentation of ModelOutput) + """ + if data is None: + return [None] * (full_batch_size // split_size) + if isinstance(data, torch.Tensor): + return [data[i : i + split_size] for i in range(0, full_batch_size, split_size)] + # New cache format + elif isinstance(data, DynamicCache) or ( + isinstance(data, EncoderDecoderCache) and isinstance(data.self_attention_cache, DynamicCache) + ): + return data.batch_split(full_batch_size, split_size, num_hidden_layers) + elif isinstance(data, tuple): + # If the elements of the tuple are also tuples (e.g., past_key_values in our earlier example) + if isinstance(data[0], tuple): + return [ + tuple(tuple(tensor[i : i + split_size] for tensor in inner_tuple) for inner_tuple in data) + for i in range(0, full_batch_size, split_size) + ] + + else: + return [ + tuple(sub_tensor[i : i + split_size] for sub_tensor in data) + for i in range(0, full_batch_size, split_size) + ] + else: + raise TypeError(f"Unexpected attribute type: {type(data)}") + + +def _split_model_inputs( + model_input: Union[ModelOutput, Dict], split_size: int, full_batch_size: int, config: PretrainedConfig +) -> List[Union[ModelOutput, Dict]]: + """ + Split a ModelOutput object (or its subclasses) or Dict into a list of same-class objects based on a specified split + size. The input object is dict when it was prepared for forward pass and ModelOutput when it was returned from + previous forward pass. + """ + # Edge case: if model_input is None, return a list of Nones + # this happens with Whisper where encoder_outputs is None + if model_input is None: + return [model_input] * (full_batch_size // split_size) + # Infer the class from the object + model_output_cls = type(model_input) + if (full_batch_size % split_size) != 0: + raise ValueError("`full_batch_size` must be divisible by `split_size`") + + if split_size > full_batch_size: + raise ValueError("`split_size` must be smaller or equal to `full_batch_size`") + + # Helper function to split tensors or tuples of tensors + + # Find all the dataclass fields (e.g., last_hidden_state, pooler_output etc.) and split them + keys = ( + model_input.__dataclass_fields__.keys() if hasattr(model_input, "__dataclass_fields__") else model_input.keys() + ) + # We only keep keys that are in the model_input + keys = [k for k in keys if k in model_input] + # Here we can have four types of values: tensors, tuples of tensors and booleans, and encoder_outputs which is a + # ModelOutput object. + # bool should not be split but replicated for each split + bool_keys = [k for k in keys if isinstance(model_input[k], bool) or k == "cache_position"] + keys_to_ignore = ["cache_position", "encoder_outputs", "num_logits_to_keep"] + non_bool_keys = [k for k in keys if not isinstance(model_input[k], bool) and k not in keys_to_ignore] + + num_hidden_layers = config.get_text_config().num_hidden_layers + + # we split the tensors and tuples of tensors + data_split_list = [ + {k: _split(model_input[k], full_batch_size, num_hidden_layers, split_size)[i] for k in non_bool_keys} + for i in range(full_batch_size // split_size) + ] + # bool values are the same and replicated for each split + bool_data = {k: model_input[k] for k in bool_keys} + # encoder_outputs is a ModelOutput object and should be split by its own + if "encoder_outputs" in model_input: + encoder_outputs_split = _split_model_inputs( + model_input["encoder_outputs"], split_size, full_batch_size, config.get_text_config() + ) + data_split_list = [ + {**data_split, "encoder_outputs": encoder_outputs_split[i]} for i, data_split in enumerate(data_split_list) + ] + # num_logits_to_keep should be replicated for each split, similar to bool values + if "num_logits_to_keep" in model_input: + data_split_list = [ + {**data_split, "num_logits_to_keep": model_input["num_logits_to_keep"]} for data_split in data_split_list + ] + + # Convert each dictionary in the list to an object of the inferred class + split_model_inputs: List[Union[ModelOutput, Dict]] = [ + model_output_cls(**data_split, **bool_data) for data_split in data_split_list + ] + + return split_model_inputs + + +def stack_model_outputs(model_outputs: List[ModelOutput], config: PretrainedConfig) -> ModelOutput: + """ + Stack a list of ModelOutput objects (or its subclasses) along the batch_size dimension. The function infers the + specific ModelOutput subclass from the list provided. + """ + if not model_outputs: + raise ValueError("Input list is empty.") + + # Infer the class from the first object in the list + model_output_cls = type(model_outputs[0]) + num_hidden_layers = config.get_text_config().num_hidden_layers + + # Ensure all objects are of the same type + if not all(isinstance(obj, model_output_cls) for obj in model_outputs): + raise ValueError("All elements in the list should be of the same type.") + + # Helper function to concat tensors or tuples of tensors + def _concat(data): + """ + Reverse of `_split` function above. + """ + if any(data is None for data in data): + return None + if isinstance(data[0], torch.Tensor): + return torch.cat(data, dim=0) + # New cache format + elif isinstance(data[0], DynamicCache): + return DynamicCache.from_batch_splits(data, num_hidden_layers=num_hidden_layers) + elif isinstance(data[0], EncoderDecoderCache): + return EncoderDecoderCache.from_batch_splits(data, num_hidden_layers=num_hidden_layers) + elif isinstance(data[0], tuple): + # If the elements of the tuple are also tuples (e.g., past_key_values in our earlier example) + if isinstance(data[0][0], tuple): + return tuple( + tuple(torch.cat([attr[i][j] for attr in data], dim=0) for j in range(len(data[0][0]))) + for i in range(len(data[0])) + ) + else: + return tuple(torch.cat([attr[i] for attr in data], dim=0) for i in range(len(data[0]))) + elif isinstance(data[0], (int, float)): + # If the elements are integers or floats, return a tensor + return torch.tensor(data) + else: + raise TypeError(f"Unexpected attribute type: {type(data[0])}") + + # Use a dictionary comprehension to gather attributes from all objects and concatenate them + concatenated_data = { + k: _concat([getattr(model_output, k) for model_output in model_outputs]) + for k in model_output_cls.__dataclass_fields__.keys() + } + + # Return a new object of the inferred class with the concatenated attributes + return model_output_cls(**concatenated_data) + + +def _relative_top_filter( + scores: torch.FloatTensor, + baseline_scores: torch.FloatTensor, + relative_top: float = 0.1, + filter_value: float = -float("Inf"), + base_filter_value=-1e-3, + min_tokens_to_keep: int = 1, +) -> torch.FloatTensor: + """ + Reference: https://github.com/XiangLi1999/ContrastiveDecoding/blob/170e9142e92159c1237d731e240f5eb14aabf428/transformers/src/transformers/generation_logits_process.py#L235 + Apply filtering to only keep tokens with a probability above a certain threshold. The threshold is defined as `relative_top` * max probability in the distribution. + """ + scores_normalized = scores.log_softmax(dim=-1) + baseline_scores_normalized = baseline_scores.log_softmax(dim=-1) + sorted_logits, sorted_indices = torch.sort(scores_normalized, descending=True) + min_thresh = sorted_logits[..., min_tokens_to_keep - 1] + probs_max = torch.max(scores_normalized, dim=-1).values + probs_thresh = probs_max + np.log(relative_top) + probs_thresh = torch.min(min_thresh, probs_thresh) + probs_thresh = probs_thresh.unsqueeze(-1) + baseline_scores_normalized[scores_normalized < probs_thresh] = base_filter_value + scores_normalized[scores_normalized < probs_thresh] = filter_value + return scores_normalized, baseline_scores_normalized + + +def _dola_select_contrast( + candidate_premature_layers: List[int], + candidate_premature_logits: Dict[int, torch.FloatTensor], + final_logits: torch.FloatTensor, +) -> torch.FloatTensor: + if len(candidate_premature_layers) == 1: + base_logits = candidate_premature_logits[candidate_premature_layers[0]] + final_logits, base_logits = _relative_top_filter(final_logits, base_logits) + logits = final_logits - base_logits + return logits + + # 1. Stacking all premature_layers into a new dimension + stacked_premature_layers = torch.stack([candidate_premature_logits[i] for i in candidate_premature_layers], dim=0) + + # 2. Calculate the softmax values for mature_layer and all premature_layers + # shape: (batch_size, vocab_size) + softmax_mature_layer = F.softmax(final_logits, dim=-1) + # shape: (num_premature_layers, batch_size, vocab_size) + softmax_premature_layers = F.softmax(stacked_premature_layers, dim=-1) + + # 3. Calculate the average distribution + # shape: (num_premature_layers, batch_size, vocab_size) + avg_dist = 0.5 * (softmax_mature_layer[None, :, :] + softmax_premature_layers) + + # 4. Calculate log-softmax for the KL divergence + # shape: (batch_size, vocab_size) + log_softmax_mature_layer = F.log_softmax(final_logits, dim=-1) + # shape: (num_premature_layers, batch_size, vocab_size) + log_softmax_premature_layers = F.log_softmax(stacked_premature_layers, dim=-1) + + # 5. Calculate the KL divergences and then the JS divergences + # shape: (num_premature_layers, batch_size) + kl1 = F.kl_div(log_softmax_mature_layer[None, :, :], avg_dist, reduction="none").mean(-1) + # shape: (num_premature_layers, batch_size) + kl2 = F.kl_div(log_softmax_premature_layers, avg_dist, reduction="none").mean(-1) + js_divs = 0.5 * (kl1 + kl2) # shape: (num_premature_layers, batch_size) + + # 6. Reduce the batchmean + js_divs = js_divs.mean(-1) # shape: (num_premature_layers,) + premature_layer = candidate_premature_layers[int(js_divs.argmax().cpu().item())] + + base_logits = candidate_premature_logits[premature_layer] + final_logits, base_logits = _relative_top_filter(final_logits, base_logits) + logits = final_logits - base_logits + return logits