Update installation guide for pipeline parallel inference (#11224)
* Update installation guide for pipeline parallel inference * Small fix * further fix * Small fix * Small fix * Update based on comments * Small fix * Small fix * Small fix
This commit is contained in:
parent
ed67435491
commit
af96579c76
3 changed files with 45 additions and 28 deletions
|
|
@ -1,4 +1,4 @@
|
|||
# Serve IPEX-LLM on Multiple Intel GPUs in multi-stage pipeline parallel fashion
|
||||
# Serve IPEX-LLM on Multiple Intel GPUs in Multi-Stage Pipeline Parallel Fashion
|
||||
|
||||
This example demonstrates how to run IPEX-LLM serving on multiple [Intel GPUs](../README.md) with Pipeline Parallel.
|
||||
|
||||
|
|
|
|||
|
|
@ -1,55 +1,70 @@
|
|||
# Run IPEX-LLM on Multiple Intel GPUs in pipeline parallel fashion
|
||||
# Run IPEX-LLM on Multiple Intel GPUs in Pipeline Parallel Fashion
|
||||
|
||||
This example demonstrates how to run IPEX-LLM optimized low-bit model vertically partitioned on two [Intel GPUs](../README.md).
|
||||
This example demonstrates how to run IPEX-LLM optimized low-bit model vertically partitioned on multiple [Intel GPUs](../README.md) for Linux users.
|
||||
|
||||
## Requirements
|
||||
To run this example with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. For this particular example, you will need at least two GPUs on your machine.
|
||||
|
||||
## Example:
|
||||
> [!NOTE]
|
||||
> To run IPEX-LLM on multiple Intel GPUs in pipeline parallel fashion, you will need to install **Intel® oneAPI Base Toolkit 2024.1**, which could be done through an offline installer:
|
||||
> ```bash
|
||||
> wget https://registrationcenter-download.intel.com/akdlm/IRC_NAS/fdc7a2bc-b7a8-47eb-8876-de6201297144/l_BaseKit_p_2024.1.0.596_offline.sh
|
||||
>
|
||||
> sudo sh ./l_BaseKit_p_2024.1.0.596_offline.sh
|
||||
> ```
|
||||
|
||||
### 1.1 Install IPEX-LLM
|
||||
## Example: Run pipeline parallel inference on multiple GPUs
|
||||
|
||||
### 1. Installation
|
||||
|
||||
```bash
|
||||
conda create -n llm python=3.11
|
||||
conda activate llm
|
||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||
# you can install specific ipex/torch version for your need
|
||||
pip install --pre --upgrade ipex-llm[xpu_2.1] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
# configures OneAPI environment variables
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
|
||||
conda install -c conda-forge -y gperftools=2.10 # to enable tcmalloc
|
||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
pip install torch==2.1.0.post2 torchvision==0.16.0.post2 torchaudio==2.1.0.post2 intel-extension-for-pytorch==2.1.30+xpu oneccl_bind_pt==2.1.300+xpu --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
```
|
||||
|
||||
### 1.2 Build and install patched version of Intel Extension for PyTorch (IPEX)
|
||||
### 2. Configures OneAPI environment variables
|
||||
|
||||
```bash
|
||||
conda activate llm
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
git clone https://github.com/intel/intel-extension-for-pytorch.git
|
||||
cd intel-extension-for-pytorch
|
||||
git checkout v2.1.10+xpu
|
||||
git submodule update --init --recursive
|
||||
git cherry-pick be8ea24078d8a271e53d2946ac533383f7a2aa78
|
||||
export USE_AOT_DEVLIST='ats-m150,pvc'
|
||||
python setup.py install
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> Please make sure you configure the environment variables for **Intel® oneAPI Base Toolkit's version == 2024.1.**.
|
||||
|
||||
> **Important**: IPEX 2.1.10+xpu requires Intel® oneAPI Base Toolkit's version == 2024.0. Please make sure you have installed the correct version.
|
||||
### 3 Runtime Configurations
|
||||
|
||||
### 2. Run pipeline parallel inference on multiple GPUs
|
||||
Here, we provide example usages on different models and different hardwares. Please refer to the appropriate script based on your model and device:
|
||||
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
|
||||
|
||||
### 3. Run
|
||||
<details>
|
||||
|
||||
For optimal performance on Arc, it is recommended to set several environment variables.
|
||||
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
|
||||
|
||||
```bash
|
||||
export USE_XETLA=OFF
|
||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||
export SYCL_CACHE_PERSISTENT=1
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>For Intel Data Center GPU Max Series</summary>
|
||||
|
||||
```bash
|
||||
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
|
||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||
export SYCL_CACHE_PERSISTENT=1
|
||||
export ENABLE_SDP_FUSION=1
|
||||
```
|
||||
> [!NOTE]
|
||||
> Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
|
||||
</details>
|
||||
|
||||
### 4. Running examples
|
||||
```
|
||||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --gpu-num GPU_NUM
|
||||
```
|
||||
|
|
@ -61,7 +76,7 @@ Arguments info:
|
|||
- `--gpu-num GPU_NUM`: argument defining the number of GPU to use. It is default to be `2`.
|
||||
|
||||
#### Sample Output
|
||||
#### [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
|
||||
##### [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
|
||||
```log
|
||||
Inference time: xxxx s
|
||||
-------------------- Prompt --------------------
|
||||
|
|
|
|||
|
|
@ -7,12 +7,14 @@ This folder contains examples of running IPEX-LLM on Intel GPU:
|
|||
- [LLM-Finetuning](LLM-Finetuning): running ***finetuning*** (such as LoRA, QLoRA, QA-LoRA, etc) using IPEX-LLM on Intel GPUs
|
||||
- [vLLM-Serving](vLLM-Serving): running ***vLLM*** serving framework on intel GPUs (with IPEX-LLM low-bit optimized models)
|
||||
- [Deepspeed-AutoTP](Deepspeed-AutoTP): running distributed inference using ***DeepSpeed AutoTP*** (with IPEX-LLM low-bit optimized models) on Intel GPUs
|
||||
- [Deepspeed-AutoTP-FastApi](Deepspeed-AutoTP-FastApi): running distributed inference using ***DeepSpeed AutoTP*** and start serving with ***FastApi***(with IPEX-LLM low-bit optimized models) on Intel GPUs
|
||||
- [Deepspeed-AutoTP-FastAPI](Deepspeed-AutoTP-FastAPI): running distributed inference using ***DeepSpeed AutoTP*** and start serving with ***FastAPI***(with IPEX-LLM low-bit optimized models) on Intel GPUs
|
||||
- [Pipeline-Parallel-Inference](Pipeline-Parallel-Inference): running IPEX-LLM optimized low-bit model vertically partitioned on multiple Intel GPUs
|
||||
- [Pipeline-Parallel-FastAPI](Pipeline-Parallel-FastAPI): running IPEX-LLM serving with **FastAPI** on multiple Intel GPUs in pipeline parallel fasion
|
||||
- [LangChain](LangChain): running ***LangChain*** applications on IPEX-LLM
|
||||
- [PyTorch-Models](PyTorch-Models): running any PyTorch model on IPEX-LLM (with "one-line code change")
|
||||
- [Speculative-Decoding](Speculative-Decoding): running any ***Hugging Face Transformers*** model with ***self-speculative decoding*** on Intel GPUs
|
||||
- [ModelScope-Models](ModelScope-Models): running ***ModelScope*** model with IPEX-LLM on Intel GPUs
|
||||
- [Long-Context](Long-Context): running **long-context** generation with IPEX-LLM on Intel Arc™ A770 Graphics.
|
||||
- [Long-Context](Long-Context): running **long-context** generation with IPEX-LLM on Intel Arc™ A770 Graphics
|
||||
|
||||
|
||||
## System Support
|
||||
|
|
|
|||
Loading…
Reference in a new issue