From af96579c76b56f45572ab3e5df6e1debfdc53652 Mon Sep 17 00:00:00 2001
From: Yuwen Hu <54161268+Oscilloscope98@users.noreply.github.com>
Date: Wed, 5 Jun 2024 17:54:29 +0800
Subject: [PATCH] Update installation guide for pipeline parallel inference
 (#11224)
* Update installation guide for pipeline parallel inference
* Small fix
* further fix
* Small fix
* Small fix
* Update based on comments
* Small fix
* Small fix
* Small fix
---
 .../GPU/Pipeline-Parallel-FastAPI/README.md   |  2 +-
 .../GPU/Pipeline-Parallel-Inference/README.md | 65 ++++++++++++-------
 python/llm/example/GPU/README.md              |  6 +-
 3 files changed, 45 insertions(+), 28 deletions(-)
diff --git a/python/llm/example/GPU/Pipeline-Parallel-FastAPI/README.md b/python/llm/example/GPU/Pipeline-Parallel-FastAPI/README.md
index e4233e37..9bc8f254 100644
--- a/python/llm/example/GPU/Pipeline-Parallel-FastAPI/README.md
+++ b/python/llm/example/GPU/Pipeline-Parallel-FastAPI/README.md
@@ -1,4 +1,4 @@
-# Serve IPEX-LLM on Multiple Intel GPUs in multi-stage pipeline parallel fashion
+# Serve IPEX-LLM on Multiple Intel GPUs in Multi-Stage Pipeline Parallel Fashion
 
 This example demonstrates how to run IPEX-LLM serving on multiple [Intel GPUs](../README.md) with Pipeline Parallel.
 
diff --git a/python/llm/example/GPU/Pipeline-Parallel-Inference/README.md b/python/llm/example/GPU/Pipeline-Parallel-Inference/README.md
index 8974afdd..1f51c5f9 100644
--- a/python/llm/example/GPU/Pipeline-Parallel-Inference/README.md
+++ b/python/llm/example/GPU/Pipeline-Parallel-Inference/README.md
@@ -1,55 +1,70 @@
-# Run IPEX-LLM on Multiple Intel GPUs in pipeline parallel fashion
+# Run IPEX-LLM on Multiple Intel GPUs in Pipeline Parallel Fashion
 
-This example demonstrates how to run IPEX-LLM optimized low-bit model vertically partitioned on two [Intel GPUs](../README.md).
+This example demonstrates how to run IPEX-LLM optimized low-bit model vertically partitioned on multiple [Intel GPUs](../README.md) for Linux users.
 
 ## Requirements
 To run this example with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. For this particular example, you will need at least two GPUs on your machine.
 
-## Example:
+> [!NOTE]
+> To run IPEX-LLM on multiple Intel GPUs in pipeline parallel fashion, you will need to install **Intel® oneAPI Base Toolkit 2024.1**, which could be done through an offline installer:
+> ```bash
+> wget https://registrationcenter-download.intel.com/akdlm/IRC_NAS/fdc7a2bc-b7a8-47eb-8876-de6201297144/l_BaseKit_p_2024.1.0.596_offline.sh
+> 
+> sudo sh ./l_BaseKit_p_2024.1.0.596_offline.sh
+> ```
 
-### 1.1 Install IPEX-LLM
+## Example: Run pipeline parallel inference on multiple GPUs
+
+### 1. Installation
 
 ```bash
 conda create -n llm python=3.11
 conda activate llm
-# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
-# you can install specific ipex/torch version for your need
-pip install --pre --upgrade ipex-llm[xpu_2.1] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
-# configures OneAPI environment variables
-source /opt/intel/oneapi/setvars.sh
 
-conda install -c conda-forge -y gperftools=2.10 # to enable tcmalloc
+pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
+pip install torch==2.1.0.post2 torchvision==0.16.0.post2 torchaudio==2.1.0.post2 intel-extension-for-pytorch==2.1.30+xpu oneccl_bind_pt==2.1.300+xpu --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 ```
 
-### 1.2 Build and install patched version of Intel Extension for PyTorch (IPEX)
+### 2. Configures OneAPI environment variables
 
 ```bash
-conda activate llm
 source /opt/intel/oneapi/setvars.sh
-git clone https://github.com/intel/intel-extension-for-pytorch.git
-cd intel-extension-for-pytorch
-git checkout v2.1.10+xpu
-git submodule update --init --recursive
-git cherry-pick be8ea24078d8a271e53d2946ac533383f7a2aa78
-export USE_AOT_DEVLIST='ats-m150,pvc'
-python setup.py install
 ```
 
+> [!NOTE]
+> Please make sure you configure the environment variables for **Intel® oneAPI Base Toolkit's version == 2024.1.**.
 
-> **Important**: IPEX 2.1.10+xpu requires Intel® oneAPI Base Toolkit's version == 2024.0. Please make sure you have installed the correct version.
+### 3 Runtime Configurations
 
-### 2. Run pipeline parallel inference on multiple GPUs
-Here, we provide example usages on different models and different hardwares. Please refer to the appropriate script based on your model and device:
+For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
 
-### 3. Run
+
 
-For optimal performance on Arc, it is recommended to set several environment variables.
+For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series
 
 ```bash
 export USE_XETLA=OFF
 export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
+export SYCL_CACHE_PERSISTENT=1
 ```
 
+ 
+
+
+
+For Intel Data Center GPU Max Series
+
+```bash
+export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
+export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
+export SYCL_CACHE_PERSISTENT=1
+export ENABLE_SDP_FUSION=1
+```
+> [!NOTE]
+> Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
+ 
+
+### 4. Running examples
 ```
 python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --gpu-num GPU_NUM
 ```
@@ -61,7 +76,7 @@ Arguments info:
 - `--gpu-num GPU_NUM`: argument defining the number of GPU to use. It is default to be `2`.
 
 #### Sample Output
-#### [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
+##### [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
 ```log
 Inference time: xxxx s
 -------------------- Prompt --------------------
diff --git a/python/llm/example/GPU/README.md b/python/llm/example/GPU/README.md
index 924611e7..68c325af 100644
--- a/python/llm/example/GPU/README.md
+++ b/python/llm/example/GPU/README.md
@@ -7,12 +7,14 @@ This folder contains examples of running IPEX-LLM on Intel GPU:
 - [LLM-Finetuning](LLM-Finetuning): running ***finetuning*** (such as LoRA, QLoRA, QA-LoRA, etc) using IPEX-LLM on Intel GPUs
 - [vLLM-Serving](vLLM-Serving): running ***vLLM*** serving framework on intel GPUs (with IPEX-LLM low-bit optimized models)
 - [Deepspeed-AutoTP](Deepspeed-AutoTP): running distributed inference using ***DeepSpeed AutoTP*** (with IPEX-LLM low-bit optimized models) on Intel GPUs
-- [Deepspeed-AutoTP-FastApi](Deepspeed-AutoTP-FastApi): running distributed inference using ***DeepSpeed AutoTP*** and start serving with ***FastApi***(with IPEX-LLM low-bit optimized models) on Intel GPUs
+- [Deepspeed-AutoTP-FastAPI](Deepspeed-AutoTP-FastAPI): running distributed inference using ***DeepSpeed AutoTP*** and start serving with ***FastAPI***(with IPEX-LLM low-bit optimized models) on Intel GPUs
+- [Pipeline-Parallel-Inference](Pipeline-Parallel-Inference): running IPEX-LLM optimized low-bit model vertically partitioned on multiple Intel GPUs
+- [Pipeline-Parallel-FastAPI](Pipeline-Parallel-FastAPI): running IPEX-LLM serving with **FastAPI** on multiple Intel GPUs in pipeline parallel fasion
 - [LangChain](LangChain): running ***LangChain*** applications on IPEX-LLM
 - [PyTorch-Models](PyTorch-Models): running any PyTorch model on IPEX-LLM (with "one-line code change")
 - [Speculative-Decoding](Speculative-Decoding): running any ***Hugging Face Transformers*** model with ***self-speculative decoding*** on Intel GPUs
 - [ModelScope-Models](ModelScope-Models): running ***ModelScope*** model with IPEX-LLM on Intel GPUs
-- [Long-Context](Long-Context): running **long-context** generation with IPEX-LLM on Intel Arc™ A770 Graphics.
+- [Long-Context](Long-Context): running **long-context** generation with IPEX-LLM on Intel Arc™ A770 Graphics
 
 
 ## System Support