parent
d5ca1f32b6
commit
aefa5a5bfe
2 changed files with 225 additions and 0 deletions
|
|
@ -287,6 +287,14 @@ def optimize(model):
|
||||||
module.InternLMAttention,
|
module.InternLMAttention,
|
||||||
internlm_attention_forward
|
internlm_attention_forward
|
||||||
)
|
)
|
||||||
|
elif model.config.model_type == "qwen":
|
||||||
|
modeling_module_name = model.__class__.__module__
|
||||||
|
module = importlib.import_module(modeling_module_name)
|
||||||
|
from bigdl.llm.transformers.models.qwen import qwen_attention_forward
|
||||||
|
convert_forward(model,
|
||||||
|
module.QWenAttention,
|
||||||
|
qwen_attention_forward
|
||||||
|
)
|
||||||
elif model.config.model_type == "aquila":
|
elif model.config.model_type == "aquila":
|
||||||
modeling_module_name = model.__class__.__module__
|
modeling_module_name = model.__class__.__module__
|
||||||
module = importlib.import_module(modeling_module_name)
|
module = importlib.import_module(modeling_module_name)
|
||||||
|
|
|
||||||
217
python/llm/src/bigdl/llm/transformers/models/qwen.py
Normal file
217
python/llm/src/bigdl/llm/transformers/models/qwen.py
Normal file
|
|
@ -0,0 +1,217 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
# Some parts of this file is adapted from
|
||||||
|
# https://huggingface.co/Qwen/Qwen-7B-Chat/blob/main/modeling_qwen.py
|
||||||
|
#
|
||||||
|
# Copyright (c) Alibaba Cloud.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the license found in the
|
||||||
|
# LICENSE file in the root directory of this source tree.
|
||||||
|
#
|
||||||
|
|
||||||
|
import importlib
|
||||||
|
import math
|
||||||
|
from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn.functional as F
|
||||||
|
import torch.utils.checkpoint
|
||||||
|
from transformers.utils import logging
|
||||||
|
|
||||||
|
try:
|
||||||
|
from einops import rearrange
|
||||||
|
except ImportError:
|
||||||
|
rearrange = None
|
||||||
|
|
||||||
|
from bigdl.llm.transformers.models.utils import extend_kv_cache, init_kv_cache, append_kv_cache
|
||||||
|
from bigdl.llm.utils.common import invalidInputError
|
||||||
|
|
||||||
|
apply_rotary_emb_func = None
|
||||||
|
|
||||||
|
flash_attn_unpadded_func = None
|
||||||
|
|
||||||
|
logger = logging.get_logger(__name__)
|
||||||
|
|
||||||
|
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
|
||||||
|
|
||||||
|
|
||||||
|
def _rotate_half(x):
|
||||||
|
from einops import rearrange
|
||||||
|
|
||||||
|
x = rearrange(x, "... (j d) -> ... j d", j=2)
|
||||||
|
x1, x2 = x.unbind(dim=-2)
|
||||||
|
return torch.cat((-x2, x1), dim=-1)
|
||||||
|
|
||||||
|
|
||||||
|
def apply_rotary_pos_emb(t, freqs):
|
||||||
|
if apply_rotary_emb_func is not None:
|
||||||
|
t_ = t.float()
|
||||||
|
freqs = freqs.squeeze(0).squeeze(1)
|
||||||
|
cos = freqs[:, : freqs.shape[-1] // 2].cos()
|
||||||
|
sin = freqs[:, : freqs.shape[-1] // 2].sin()
|
||||||
|
output = apply_rotary_emb_func(t_, cos, sin).type_as(t)
|
||||||
|
return output
|
||||||
|
else:
|
||||||
|
rot_dim = freqs.shape[-1]
|
||||||
|
t_, t_pass_ = t[..., :rot_dim], t[..., rot_dim:]
|
||||||
|
t_ = t_.float()
|
||||||
|
t_pass_ = t_pass_.float()
|
||||||
|
t_ = (t_ * freqs.cos()) + (_rotate_half(t_) * freqs.sin())
|
||||||
|
return torch.cat((t_, t_pass_), dim=-1).type_as(t)
|
||||||
|
|
||||||
|
|
||||||
|
def qwen_attention_forward(
|
||||||
|
self,
|
||||||
|
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
||||||
|
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
||||||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||||||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||||||
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||||||
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||||||
|
output_attentions: Optional[bool] = False,
|
||||||
|
use_cache: Optional[bool] = False,
|
||||||
|
):
|
||||||
|
mixed_x_layer = self.c_attn(hidden_states)
|
||||||
|
query, key, value = mixed_x_layer.split(self.split_size, dim=2)
|
||||||
|
|
||||||
|
query = self._split_heads(query, self.num_heads, self.head_dim)
|
||||||
|
key = self._split_heads(key, self.num_heads, self.head_dim)
|
||||||
|
value = self._split_heads(value, self.num_heads, self.head_dim)
|
||||||
|
|
||||||
|
kv_seq_len = hidden_states.size()[1]
|
||||||
|
|
||||||
|
if layer_past:
|
||||||
|
# layer past[0] shape: bs * seq_len * head_num * dim
|
||||||
|
kv_seq_len += layer_past[0].shape[1]
|
||||||
|
if (
|
||||||
|
self.use_dynamic_ntk
|
||||||
|
and kv_seq_len == hidden_states.size()[1]
|
||||||
|
and not self.training
|
||||||
|
):
|
||||||
|
context_value = math.log(kv_seq_len / self.seq_length, 2) + 1
|
||||||
|
ntk_alpha = 2 ** math.ceil(context_value) - 1
|
||||||
|
ntk_alpha = max(ntk_alpha, 1)
|
||||||
|
self._ntk_cached = ntk_alpha
|
||||||
|
else:
|
||||||
|
ntk_alpha = self._ntk_cached
|
||||||
|
rotary_pos_emb = self.rotary_emb(kv_seq_len, ntk_alpha=ntk_alpha).to(
|
||||||
|
hidden_states.device
|
||||||
|
)
|
||||||
|
|
||||||
|
if rotary_pos_emb is not None:
|
||||||
|
if isinstance(rotary_pos_emb, tuple):
|
||||||
|
rotary_pos_emb = rotary_pos_emb
|
||||||
|
else:
|
||||||
|
rotary_pos_emb = (rotary_pos_emb,) * 2
|
||||||
|
|
||||||
|
if rotary_pos_emb is not None:
|
||||||
|
q_pos_emb, k_pos_emb = rotary_pos_emb
|
||||||
|
# Slice the pos emb for current inference
|
||||||
|
cur_len = query.shape[1]
|
||||||
|
q_pos_emb = q_pos_emb[:, -cur_len:, :, :]
|
||||||
|
k_pos_emb = k_pos_emb[:, -cur_len:, :, :]
|
||||||
|
query = apply_rotary_pos_emb(query, q_pos_emb)
|
||||||
|
key = apply_rotary_pos_emb(key, k_pos_emb)
|
||||||
|
|
||||||
|
bsz, _, n_heads, head_dim = key.size()
|
||||||
|
|
||||||
|
if layer_past is not None:
|
||||||
|
# past_key, past_value = layer_past[0], layer_past[1]
|
||||||
|
# key = torch.cat((past_key, key), dim=1)
|
||||||
|
# value = torch.cat((past_value, value), dim=1)
|
||||||
|
cache_k = layer_past[0].transpose(1, 2)
|
||||||
|
cache_v = layer_past[1].transpose(1, 2)
|
||||||
|
if cache_k.stride()[1] <= cache_k.size(2) * cache_k.size(3):
|
||||||
|
# allocate new
|
||||||
|
new_cache_k, new_cache_v = extend_kv_cache(bsz,
|
||||||
|
self.num_heads, # Support GQA
|
||||||
|
self.head_dim,
|
||||||
|
cache_k.size(2),
|
||||||
|
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
|
||||||
|
dtype=cache_k.dtype,
|
||||||
|
device=hidden_states.device)
|
||||||
|
new_cache_k[:] = cache_k
|
||||||
|
new_cache_v[:] = cache_v
|
||||||
|
cache_k = new_cache_k
|
||||||
|
cache_v = new_cache_v
|
||||||
|
|
||||||
|
key_states, value_states = append_kv_cache(cache_k, cache_v,
|
||||||
|
key.transpose(1, 2), value.transpose(1, 2))
|
||||||
|
key = key_states.transpose(1, 2)
|
||||||
|
value = value_states.transpose(1, 2)
|
||||||
|
elif use_cache:
|
||||||
|
max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
|
||||||
|
new_key_states, new_value_states = init_kv_cache(bsz,
|
||||||
|
self.num_heads,
|
||||||
|
self.head_dim,
|
||||||
|
kv_seq_len,
|
||||||
|
max_cache_length,
|
||||||
|
dtype=key.dtype,
|
||||||
|
device=hidden_states.device)
|
||||||
|
new_key_states[:] = key.transpose(1, 2)
|
||||||
|
new_value_states[:] = value.transpose(1, 2)
|
||||||
|
key = new_key_states.transpose(1, 2)
|
||||||
|
value = new_value_states.transpose(1, 2)
|
||||||
|
|
||||||
|
if use_cache:
|
||||||
|
present = (key, value)
|
||||||
|
else:
|
||||||
|
present = None
|
||||||
|
|
||||||
|
if self.use_logn_attn and not self.training:
|
||||||
|
if self.logn_tensor.device != query.device or self.logn_tensor.dtype != query.dtype:
|
||||||
|
self.logn_tensor = self.logn_tensor.to(query.device).type_as(query)
|
||||||
|
seq_start = key.size(1) - query.size(1)
|
||||||
|
seq_end = key.size(1)
|
||||||
|
logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :]
|
||||||
|
query = query * logn_tensor.expand_as(query)
|
||||||
|
|
||||||
|
if (
|
||||||
|
self.use_flash_attn
|
||||||
|
and flash_attn_unpadded_func is not None
|
||||||
|
and not self.is_fp32
|
||||||
|
and query.is_cuda
|
||||||
|
):
|
||||||
|
q, k, v = query, key, value
|
||||||
|
context_layer = self.core_attention_flash(q, k, v)
|
||||||
|
|
||||||
|
context_layer = rearrange(
|
||||||
|
context_layer, "b s h d -> b s (h d)"
|
||||||
|
).contiguous()
|
||||||
|
else:
|
||||||
|
query = query.permute(0, 2, 1, 3)
|
||||||
|
key = key.permute(0, 2, 1, 3)
|
||||||
|
value = value.permute(0, 2, 1, 3)
|
||||||
|
attn_output, attn_weight = self._attn(
|
||||||
|
query, key, value, attention_mask, head_mask
|
||||||
|
)
|
||||||
|
context_layer = self._merge_heads(
|
||||||
|
attn_output, self.num_heads, self.head_dim
|
||||||
|
)
|
||||||
|
|
||||||
|
attn_output = self.c_proj(context_layer)
|
||||||
|
outputs = (attn_output, present)
|
||||||
|
if output_attentions:
|
||||||
|
if (
|
||||||
|
self.use_flash_attn
|
||||||
|
and flash_attn_unpadded_func is not None
|
||||||
|
and not self.is_fp32
|
||||||
|
):
|
||||||
|
invalidInputError("Cannot output attentions while using flash-attn")
|
||||||
|
else:
|
||||||
|
outputs += (attn_weight,)
|
||||||
|
|
||||||
|
return outputs
|
||||||
Loading…
Reference in a new issue