parent
							
								
									7506100bd5
								
							
						
					
					
						commit
						d5ca1f32b6
					
				
					 3 changed files with 166 additions and 1 deletions
				
			
		| 
						 | 
				
			
			@ -287,4 +287,12 @@ def optimize(model):
 | 
			
		|||
                        module.InternLMAttention,
 | 
			
		||||
                        internlm_attention_forward
 | 
			
		||||
                        )
 | 
			
		||||
    elif model.config.model_type == "aquila":
 | 
			
		||||
        modeling_module_name = model.__class__.__module__
 | 
			
		||||
        module = importlib.import_module(modeling_module_name)
 | 
			
		||||
        from bigdl.llm.transformers.models.aquila import aquila_attention_forward
 | 
			
		||||
        convert_forward(model,
 | 
			
		||||
                        module.AquilaAttention,
 | 
			
		||||
                        aquila_attention_forward
 | 
			
		||||
                        )
 | 
			
		||||
    return model
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										157
									
								
								python/llm/src/bigdl/llm/transformers/models/aquila.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										157
									
								
								python/llm/src/bigdl/llm/transformers/models/aquila.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,157 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
# Some parts of this file is adapted from
 | 
			
		||||
# https://huggingface.co/BAAI/AquilaChat-7B/blob/main/modeling_aquila.py
 | 
			
		||||
#
 | 
			
		||||
# Copyright 2023 EleutherAI and the HuggingFace Inc. team. All rights reserved.
 | 
			
		||||
#
 | 
			
		||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
 | 
			
		||||
# and OPT implementations in this library. It has been modified from its
 | 
			
		||||
# original forms to accommodate minor architectural differences compared
 | 
			
		||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
 | 
			
		||||
import math
 | 
			
		||||
from typing import List, Optional, Tuple, Union
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import torch.utils.checkpoint
 | 
			
		||||
from torch import nn
 | 
			
		||||
 | 
			
		||||
from bigdl.llm.transformers.models.utils import extend_kv_cache, init_kv_cache, append_kv_cache
 | 
			
		||||
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb
 | 
			
		||||
from bigdl.dllib.utils import log4Error
 | 
			
		||||
 | 
			
		||||
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def aquila_attention_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    hidden_states: torch.Tensor,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    past_key_value: Optional[Tuple[torch.Tensor]] = None,
 | 
			
		||||
    output_attentions: bool = False,
 | 
			
		||||
    use_cache: bool = False,
 | 
			
		||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
			
		||||
    bsz, q_len, _ = hidden_states.size()
 | 
			
		||||
 | 
			
		||||
    query_states = self.q_proj(hidden_states)\
 | 
			
		||||
        .view(bsz, q_len, self.num_heads, self.head_dim)\
 | 
			
		||||
        .transpose(1, 2)
 | 
			
		||||
    key_states = self.k_proj(hidden_states)\
 | 
			
		||||
        .view(bsz, q_len, self.num_heads, self.head_dim)\
 | 
			
		||||
        .transpose(1, 2)
 | 
			
		||||
    value_states = self.v_proj(hidden_states)\
 | 
			
		||||
        .view(bsz, q_len, self.num_heads, self.head_dim)\
 | 
			
		||||
        .transpose(1, 2)
 | 
			
		||||
 | 
			
		||||
    kv_seq_len = key_states.shape[-2]
 | 
			
		||||
    if past_key_value is not None:
 | 
			
		||||
        kv_seq_len += past_key_value[0].shape[-2]
 | 
			
		||||
    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
			
		||||
    query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
 | 
			
		||||
                                                    cos, sin, position_ids, "aquila")
 | 
			
		||||
    # [bsz, nh, t, hd]
 | 
			
		||||
 | 
			
		||||
    if past_key_value is not None:
 | 
			
		||||
        # reuse k, v, self_attention
 | 
			
		||||
        cache_k = past_key_value[0]
 | 
			
		||||
        cache_v = past_key_value[1]
 | 
			
		||||
        if cache_k.stride()[1] <= cache_k.size(2) * cache_k.size(3):
 | 
			
		||||
            # allocate new
 | 
			
		||||
            new_cache_k, new_cache_v = extend_kv_cache(bsz,
 | 
			
		||||
                                                       self.num_heads,  # Support GQA
 | 
			
		||||
                                                       self.head_dim,
 | 
			
		||||
                                                       cache_k.size(2),
 | 
			
		||||
                                                       kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
 | 
			
		||||
                                                       dtype=cache_k.dtype,
 | 
			
		||||
                                                       device=hidden_states.device)
 | 
			
		||||
            new_cache_k[:] = cache_k
 | 
			
		||||
            new_cache_v[:] = cache_v
 | 
			
		||||
            cache_k = new_cache_k
 | 
			
		||||
            cache_v = new_cache_v
 | 
			
		||||
 | 
			
		||||
        key_states, value_states = append_kv_cache(cache_k, cache_v, key_states, value_states)
 | 
			
		||||
 | 
			
		||||
    elif use_cache:
 | 
			
		||||
        max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
 | 
			
		||||
        new_key_states, new_value_states = init_kv_cache(bsz,
 | 
			
		||||
                                                         self.num_heads,
 | 
			
		||||
                                                         self.head_dim,
 | 
			
		||||
                                                         kv_seq_len,
 | 
			
		||||
                                                         max_cache_length,
 | 
			
		||||
                                                         dtype=key_states.dtype,
 | 
			
		||||
                                                         device=hidden_states.device)
 | 
			
		||||
        new_key_states[:] = key_states
 | 
			
		||||
        new_value_states[:] = value_states
 | 
			
		||||
        key_states = new_key_states
 | 
			
		||||
        value_states = new_value_states
 | 
			
		||||
 | 
			
		||||
    past_key_value = (key_states, value_states) if use_cache else None
 | 
			
		||||
 | 
			
		||||
    attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
			
		||||
 | 
			
		||||
    attn_weights = torch.clamp(attn_weights, min=-1024., max=1024.)
 | 
			
		||||
    if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
 | 
			
		||||
        log4Error.invalidInputError(
 | 
			
		||||
            f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, "
 | 
			
		||||
            f"but is {attn_weights.size()}"
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    if attention_mask is not None:
 | 
			
		||||
        if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
 | 
			
		||||
            log4Error.invalidInputError(
 | 
			
		||||
                f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, "
 | 
			
		||||
                f"but is {attention_mask.size()}"
 | 
			
		||||
            )
 | 
			
		||||
        attn_weights = attn_weights + attention_mask
 | 
			
		||||
        attn_weights = torch.max(
 | 
			
		||||
            attn_weights,
 | 
			
		||||
            torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device)
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    # upcast attention to fp32
 | 
			
		||||
    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32)\
 | 
			
		||||
        .to(query_states.dtype)
 | 
			
		||||
    attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
 | 
			
		||||
    if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
 | 
			
		||||
        log4Error.invalidInputError(
 | 
			
		||||
            f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, "
 | 
			
		||||
            f"but is {attn_output.size()}"
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    attn_output = attn_output.transpose(1, 2)
 | 
			
		||||
    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
			
		||||
 | 
			
		||||
    attn_output = self.o_proj(attn_output)
 | 
			
		||||
 | 
			
		||||
    if not output_attentions:
 | 
			
		||||
        attn_weights = None
 | 
			
		||||
 | 
			
		||||
    return attn_output, attn_weights, past_key_value
 | 
			
		||||
| 
						 | 
				
			
			@ -71,7 +71,7 @@ def rotate_every_two(x):
 | 
			
		|||
 | 
			
		||||
 | 
			
		||||
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, model_family):
 | 
			
		||||
    if model_family in ["llama", "baichuan", "internlm"]:
 | 
			
		||||
    if model_family in ["llama", "baichuan", "internlm", "aquila"]:
 | 
			
		||||
        # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
 | 
			
		||||
        cos = cos.squeeze(1).squeeze(0)  # [seq_len, dim]
 | 
			
		||||
        sin = sin.squeeze(1).squeeze(0)  # [seq_len, dim]
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue