QuickStart: Run Llama 3 on Intel GPU using llama.cpp and ollama with IPEX-LLM (#10809)

* initial commit

* update llama.cpp

* add demo video at first

* fix ollama link in readme

* meet review

* update

* small fix
This commit is contained in:
Ruonan Wang 2024-04-19 17:44:59 +08:00 committed by GitHub
parent caf75beef8
commit a8df429985
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 164 additions and 2 deletions

View file

@ -49,7 +49,7 @@ See the demo of running [*Text-Generation-WebUI*](https://ipex-llm.readthedocs.i
## Latest Update 🔥 ## Latest Update 🔥
- [2024/04] `ipex-llm` now supports **Llama 3** on both Intel [GPU](python/llm/example/GPU/HF-Transformers-AutoModels/Model/llama3) and [CPU](python/llm/example/CPU/HF-Transformers-AutoModels/Model/llama3). - [2024/04] `ipex-llm` now supports **Llama 3** on both Intel [GPU](python/llm/example/GPU/HF-Transformers-AutoModels/Model/llama3) and [CPU](python/llm/example/CPU/HF-Transformers-AutoModels/Model/llama3).
- [2024/04] `ipex-llm` now provides C++ interface, which can be used as an accelerated backend for running [llama.cpp](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html) and [ollama](https://ipex-llm.readthedocs.io/en/main/doc/LLM/Quickstart/ollama_quickstart.html) on Intel GPU. - [2024/04] `ipex-llm` now provides C++ interface, which can be used as an accelerated backend for running [llama.cpp](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html) and [ollama](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/ollama_quickstart.html) on Intel GPU.
- [2024/03] `bigdl-llm` has now become `ipex-llm` (see the migration guide [here](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/bigdl_llm_migration.html)); you may find the original `BigDL` project [here](https://github.com/intel-analytics/bigdl-2.x). - [2024/03] `bigdl-llm` has now become `ipex-llm` (see the migration guide [here](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/bigdl_llm_migration.html)); you may find the original `BigDL` project [here](https://github.com/intel-analytics/bigdl-2.x).
- [2024/02] `ipex-llm` now supports directly loading model from [ModelScope](python/llm/example/GPU/ModelScope-Models) ([魔搭](python/llm/example/CPU/ModelScope-Models)). - [2024/02] `ipex-llm` now supports directly loading model from [ModelScope](python/llm/example/GPU/ModelScope-Models) ([魔搭](python/llm/example/CPU/ModelScope-Models)).
- [2024/02] `ipex-llm` added initial **INT2** support (based on llama.cpp [IQ2](python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/GGUF-IQ2) mechanism), which makes it possible to run large-size LLM (e.g., Mixtral-8x7B) on Intel GPU with 16GB VRAM. - [2024/02] `ipex-llm` added initial **INT2** support (based on llama.cpp [IQ2](python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/GGUF-IQ2) mechanism), which makes it possible to run large-size LLM (e.g., Mixtral-8x7B) on Intel GPU with 16GB VRAM.
@ -84,7 +84,7 @@ See the demo of running [*Text-Generation-WebUI*](https://ipex-llm.readthedocs.i
### Run `ipex-llm` ### Run `ipex-llm`
- [llama.cpp](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html): running **llama.cpp** (*using C++ interface of `ipex-llm` as an accelerated backend for `llama.cpp`*) on Intel GPU - [llama.cpp](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html): running **llama.cpp** (*using C++ interface of `ipex-llm` as an accelerated backend for `llama.cpp`*) on Intel GPU
- [ollama](https://ipex-llm.readthedocs.io/en/main/doc/LLM/Quickstart/ollama_quickstart.html): running **ollama** (*using C++ interface of `ipex-llm` as an accelerated backend for `ollama`*) on Intel GPU - [ollama](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/ollama_quickstart.html): running **ollama** (*using C++ interface of `ipex-llm` as an accelerated backend for `ollama`*) on Intel GPU
- [vLLM](python/llm/example/GPU/vLLM-Serving): running `ipex-llm` in `vLLM` on both Intel [GPU](python/llm/example/GPU/vLLM-Serving) and [CPU](python/llm/example/CPU/vLLM-Serving) - [vLLM](python/llm/example/GPU/vLLM-Serving): running `ipex-llm` in `vLLM` on both Intel [GPU](python/llm/example/GPU/vLLM-Serving) and [CPU](python/llm/example/CPU/vLLM-Serving)
- [FastChat](python/llm/src/ipex_llm/serving/fastchat): running `ipex-llm` in `FastChat` serving on on both Intel GPU and CPU - [FastChat](python/llm/src/ipex_llm/serving/fastchat): running `ipex-llm` in `FastChat` serving on on both Intel GPU and CPU
- [LangChain-Chatchat RAG](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/chatchat_quickstart.html): running `ipex-llm` in `LangChain-Chatchat` (*Knowledge Base QA using **RAG** pipeline*) - [LangChain-Chatchat RAG](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/chatchat_quickstart.html): running `ipex-llm` in `LangChain-Chatchat` (*Knowledge Base QA using **RAG** pipeline*)

View file

@ -49,6 +49,9 @@
<li> <li>
<a href="doc/LLM/Quickstart/ollama_quickstart.html">Run Ollama with IPEX-LLM on Intel GPU</a> <a href="doc/LLM/Quickstart/ollama_quickstart.html">Run Ollama with IPEX-LLM on Intel GPU</a>
</li> </li>
<li>
<a href="doc/LLM/Quickstart/llama3_llamacpp_ollama_quickstart.html">Run Llama 3 on Intel GPU using llama.cpp and ollama with IPEX-LLM</a>
</li>
<li> <li>
<a href="doc/LLM/Quickstart/fastchat_quickstart.html">Run IPEX-LLM Serving with FastChat</a> <a href="doc/LLM/Quickstart/fastchat_quickstart.html">Run IPEX-LLM Serving with FastChat</a>
</li> </li>

View file

@ -30,6 +30,7 @@ subtrees:
- file: doc/LLM/Quickstart/benchmark_quickstart - file: doc/LLM/Quickstart/benchmark_quickstart
- file: doc/LLM/Quickstart/llama_cpp_quickstart - file: doc/LLM/Quickstart/llama_cpp_quickstart
- file: doc/LLM/Quickstart/ollama_quickstart - file: doc/LLM/Quickstart/ollama_quickstart
- file: doc/LLM/Quickstart/llama3_llamacpp_ollama_quickstart
- file: doc/LLM/Quickstart/fastchat_quickstart - file: doc/LLM/Quickstart/fastchat_quickstart
- file: doc/LLM/Overview/KeyFeatures/index - file: doc/LLM/Overview/KeyFeatures/index
title: "Key Features" title: "Key Features"

View file

@ -19,6 +19,7 @@ This section includes efficient guide to show you how to:
* `Run Coding Copilot (Continue) in VSCode with Intel GPU <./continue_quickstart.html>`_ * `Run Coding Copilot (Continue) in VSCode with Intel GPU <./continue_quickstart.html>`_
* `Run llama.cpp with IPEX-LLM on Intel GPU <./llama_cpp_quickstart.html>`_ * `Run llama.cpp with IPEX-LLM on Intel GPU <./llama_cpp_quickstart.html>`_
* `Run Ollama with IPEX-LLM on Intel GPU <./ollama_quickstart.html>`_ * `Run Ollama with IPEX-LLM on Intel GPU <./ollama_quickstart.html>`_
* `Run Llama 3 on Intel GPU using llama.cpp and ollama with IPEX-LLM <./llama3_llamacpp_ollama_quickstart.html>`_
* `Run IPEX-LLM Serving with FastChat <./fastchat_quickstart.html>`_ * `Run IPEX-LLM Serving with FastChat <./fastchat_quickstart.html>`_
.. |bigdl_llm_migration_guide| replace:: ``bigdl-llm`` Migration Guide .. |bigdl_llm_migration_guide| replace:: ``bigdl-llm`` Migration Guide

View file

@ -0,0 +1,157 @@
# Run Llama 3 on Intel GPU using llama.cpp and ollama with IPEX-LLM
[Llama 3](https://llama.meta.com/llama3/) is the latest Large Language Models released by [Meta](https://llama.meta.com/) which provides state-of-the-art performance and excels at language nuances, contextual understanding, and complex tasks like translation and dialogue generation.
Now, you can easily run Llama 3 on Intel GPU using `llama.cpp` and `Ollama` with IPEX-LLM.
See the demo of running Llama-3-8B-Instruct on Intel Arc GPU using `Ollama` below.
<video src="https://llm-assets.readthedocs.io/en/latest/_images/ollama-llama3-linux-arc.mp4" width="100%" controls></video>
## Quick Start
This quickstart guide walks you through how to run Llama 3 on Intel GPU using `llama.cpp` / `Ollama` with IPEX-LLM.
### 1. Run Llama 3 using llama.cpp
#### 1.1 Install IPEX-LLM for llama.cpp and Initialize
Visit [Run llama.cpp with IPEX-LLM on Intel GPU Guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html), and follow the instructions in section [Prerequisites](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html#prerequisites) to setup and section [Install IPEX-LLM for llama.cpp](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html#install-ipex-llm-for-llama-cpp) to install the IPEX-LLM with llama.cpp binaries, then follow the instructions in section [Initialize llama.cpp with IPEX-LLM](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html#prerequisites) to initialize.
**After above steps, you should have created a conda environment, named `llm-cpp` for instance and have llama.cpp binaries in your current directory.**
**Now you can use these executable files by standard llama.cpp usage.**
#### 1.2 Download Llama3
There already are some GGUF models of Llama3 in community, here we take [Meta-Llama-3-8B-Instruct-GGUF](https://huggingface.co/lmstudio-community/Meta-Llama-3-8B-Instruct-GGUF) for example.
Suppose you have downloaded a [Meta-Llama-3-8B-Instruct-Q4_K_M.gguf](https://huggingface.co/lmstudio-community/Meta-Llama-3-8B-Instruct-GGUF/resolve/main/Meta-Llama-3-8B-Instruct-Q4_K_M.gguf) model from [Meta-Llama-3-8B-Instruct-GGUF](https://huggingface.co/lmstudio-community/Meta-Llama-3-8B-Instruct-GGUF) and put it under `<model_dir>`.
#### 1.3 Run Llama3 on Intel GPU using llama.cpp
Under your current directory, exceuting below command to do inference with Llama3:
```eval_rst
.. tabs::
.. tab:: Linux
.. code-block:: bash
./main -m <model_dir>/Meta-Llama-3-8B-Instruct-Q4_K_M.gguf -n 32 --prompt "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun doing something" -t 8 -e -ngl 33 --color --no-mmap
.. tab:: Windows
Please run the following command in Anaconda Prompt.
.. code-block:: bash
main -ngl 33 -m <model_dir>/Meta-Llama-3-8B-Instruct-Q4_K_M.gguf -n 32 --prompt "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun doing something" -e -ngl 33 --color --no-mmap
```
Under your current directory, you can also exceute below command to have interative chat with Llama3:
```eval_rst
.. tabs::
.. tab:: Linux
.. code-block:: bash
./main -ngl 33 -c 0 --interactive-first --color -e --in-prefix '<|start_header_id|>user<|end_header_id|>\n\n' --in-suffix '<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n' -r '<|eot_id|>' -m <model_dir>/Meta-Llama-3-8B-Instruct-Q4_K_M.gguf
.. tab:: Windows
Please run the following command in Anaconda Prompt.
.. code-block:: bash
main -ngl 33 -c 0 --interactive-first --color -e --in-prefix '<|start_header_id|>user<|end_header_id|>\n\n' --in-suffix '<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n' -r '<|eot_id|>' -m <model_dir>/Meta-Llama-3-8B-Instruct-Q4_K_M.gguf
```
Below is a sample output on Intel Arc GPU:
<img src="https://llm-assets.readthedocs.io/en/latest/_images/llama3-cpp-arc-demo.png" width=100%; />
### 2. Run Llama3 using Ollama
#### 2.1 Install IPEX-LLM for Ollama and Initialize
Visit [Run Ollama with IPEX-LLM on Intel GPU](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/ollama_quickstart.html), and follow the instructions in section [Install IPEX-LLM for llama.cpp](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html#install-ipex-llm-for-llama-cpp) to install the IPEX-LLM with Ollama binary, then follow the instructions in section [Initialize Ollama](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/ollama_quickstart.html#initialize-ollama) to initialize.
**After above steps, you should have created a conda environment, named `llm-cpp` for instance and have ollama binary file in your current directory.**
**Now you can use this executable file by standard Ollama usage.**
#### 2.2 Run Llama3 on Intel GPU using Ollama
[ollama/ollama](https://github.com/ollama/ollama) has alreadly added [Llama3](https://ollama.com/library/llama3) into its library, so it's really easy to run Llama3 using ollama now.
##### 2.2.1 Run Ollama Serve
Launch the Ollama service:
```eval_rst
.. tabs::
.. tab:: Linux
.. code-block:: bash
export no_proxy=localhost,127.0.0.1
export ZES_ENABLE_SYSMAN=1
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export OLLAMA_NUM_GPU=999
source /opt/intel/oneapi/setvars.sh
./ollama serve
.. tab:: Windows
Please run the following command in Anaconda Prompt.
.. code-block:: bash
set no_proxy=localhost,127.0.0.1
set ZES_ENABLE_SYSMAN=1
set OLLAMA_NUM_GPU=999
call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat"
ollama serve
```
```eval_rst
.. note::
To allow the service to accept connections from all IP addresses, use `OLLAMA_HOST=0.0.0.0 ./ollama serve` instead of just `./ollama serve`.
```
#### 2.2.2 Using Ollama Run Llama3
Keep the Ollama service on and open another terminal and run llama3 with `ollama run`:
```eval_rst
.. tabs::
.. tab:: Linux
.. code-block:: bash
export no_proxy=localhost,127.0.0.1
./ollama run llama3:8b-instruct-q4_K_M
.. tab:: Windows
Please run the following command in Anaconda Prompt.
.. code-block:: bash
set no_proxy=localhost,127.0.0.1
ollama run llama3:8b-instruct-q4_K_M
```
```eval_rst
.. note::
Here we just take `llama3:8b-instruct-q4_K_M` for example, you can replace it with any other Llama3 model you want.
```
Below is a sample output on Intel Arc GPU :
<img src="https://llm-assets.readthedocs.io/en/latest/_images/ollama-llama3-arc-demo.png" width=100%; />