diff --git a/README.md b/README.md index 5d46b3b9..31ac6599 100644 --- a/README.md +++ b/README.md @@ -49,7 +49,7 @@ See the demo of running [*Text-Generation-WebUI*](https://ipex-llm.readthedocs.i ## Latest Update 🔥 - [2024/04] `ipex-llm` now supports **Llama 3** on both Intel [GPU](python/llm/example/GPU/HF-Transformers-AutoModels/Model/llama3) and [CPU](python/llm/example/CPU/HF-Transformers-AutoModels/Model/llama3). -- [2024/04] `ipex-llm` now provides C++ interface, which can be used as an accelerated backend for running [llama.cpp](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html) and [ollama](https://ipex-llm.readthedocs.io/en/main/doc/LLM/Quickstart/ollama_quickstart.html) on Intel GPU. +- [2024/04] `ipex-llm` now provides C++ interface, which can be used as an accelerated backend for running [llama.cpp](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html) and [ollama](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/ollama_quickstart.html) on Intel GPU. - [2024/03] `bigdl-llm` has now become `ipex-llm` (see the migration guide [here](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/bigdl_llm_migration.html)); you may find the original `BigDL` project [here](https://github.com/intel-analytics/bigdl-2.x). - [2024/02] `ipex-llm` now supports directly loading model from [ModelScope](python/llm/example/GPU/ModelScope-Models) ([魔搭](python/llm/example/CPU/ModelScope-Models)). - [2024/02] `ipex-llm` added initial **INT2** support (based on llama.cpp [IQ2](python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/GGUF-IQ2) mechanism), which makes it possible to run large-size LLM (e.g., Mixtral-8x7B) on Intel GPU with 16GB VRAM. @@ -84,7 +84,7 @@ See the demo of running [*Text-Generation-WebUI*](https://ipex-llm.readthedocs.i ### Run `ipex-llm` - [llama.cpp](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html): running **llama.cpp** (*using C++ interface of `ipex-llm` as an accelerated backend for `llama.cpp`*) on Intel GPU -- [ollama](https://ipex-llm.readthedocs.io/en/main/doc/LLM/Quickstart/ollama_quickstart.html): running **ollama** (*using C++ interface of `ipex-llm` as an accelerated backend for `ollama`*) on Intel GPU +- [ollama](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/ollama_quickstart.html): running **ollama** (*using C++ interface of `ipex-llm` as an accelerated backend for `ollama`*) on Intel GPU - [vLLM](python/llm/example/GPU/vLLM-Serving): running `ipex-llm` in `vLLM` on both Intel [GPU](python/llm/example/GPU/vLLM-Serving) and [CPU](python/llm/example/CPU/vLLM-Serving) - [FastChat](python/llm/src/ipex_llm/serving/fastchat): running `ipex-llm` in `FastChat` serving on on both Intel GPU and CPU - [LangChain-Chatchat RAG](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/chatchat_quickstart.html): running `ipex-llm` in `LangChain-Chatchat` (*Knowledge Base QA using **RAG** pipeline*) diff --git a/docs/readthedocs/source/_templates/sidebar_quicklinks.html b/docs/readthedocs/source/_templates/sidebar_quicklinks.html index 673011fa..9465e770 100644 --- a/docs/readthedocs/source/_templates/sidebar_quicklinks.html +++ b/docs/readthedocs/source/_templates/sidebar_quicklinks.html @@ -49,6 +49,9 @@
  • Run Ollama with IPEX-LLM on Intel GPU
  • +
  • + Run Llama 3 on Intel GPU using llama.cpp and ollama with IPEX-LLM +
  • Run IPEX-LLM Serving with FastChat
  • diff --git a/docs/readthedocs/source/_toc.yml b/docs/readthedocs/source/_toc.yml index 40b6ce20..5076ea0b 100644 --- a/docs/readthedocs/source/_toc.yml +++ b/docs/readthedocs/source/_toc.yml @@ -30,6 +30,7 @@ subtrees: - file: doc/LLM/Quickstart/benchmark_quickstart - file: doc/LLM/Quickstart/llama_cpp_quickstart - file: doc/LLM/Quickstart/ollama_quickstart + - file: doc/LLM/Quickstart/llama3_llamacpp_ollama_quickstart - file: doc/LLM/Quickstart/fastchat_quickstart - file: doc/LLM/Overview/KeyFeatures/index title: "Key Features" diff --git a/docs/readthedocs/source/doc/LLM/Quickstart/index.rst b/docs/readthedocs/source/doc/LLM/Quickstart/index.rst index adaa6fb8..fc6d3121 100644 --- a/docs/readthedocs/source/doc/LLM/Quickstart/index.rst +++ b/docs/readthedocs/source/doc/LLM/Quickstart/index.rst @@ -19,6 +19,7 @@ This section includes efficient guide to show you how to: * `Run Coding Copilot (Continue) in VSCode with Intel GPU <./continue_quickstart.html>`_ * `Run llama.cpp with IPEX-LLM on Intel GPU <./llama_cpp_quickstart.html>`_ * `Run Ollama with IPEX-LLM on Intel GPU <./ollama_quickstart.html>`_ +* `Run Llama 3 on Intel GPU using llama.cpp and ollama with IPEX-LLM <./llama3_llamacpp_ollama_quickstart.html>`_ * `Run IPEX-LLM Serving with FastChat <./fastchat_quickstart.html>`_ .. |bigdl_llm_migration_guide| replace:: ``bigdl-llm`` Migration Guide diff --git a/docs/readthedocs/source/doc/LLM/Quickstart/llama3_llamacpp_ollama_quickstart.md b/docs/readthedocs/source/doc/LLM/Quickstart/llama3_llamacpp_ollama_quickstart.md new file mode 100644 index 00000000..6ec9252a --- /dev/null +++ b/docs/readthedocs/source/doc/LLM/Quickstart/llama3_llamacpp_ollama_quickstart.md @@ -0,0 +1,157 @@ +# Run Llama 3 on Intel GPU using llama.cpp and ollama with IPEX-LLM + +[Llama 3](https://llama.meta.com/llama3/) is the latest Large Language Models released by [Meta](https://llama.meta.com/) which provides state-of-the-art performance and excels at language nuances, contextual understanding, and complex tasks like translation and dialogue generation. + +Now, you can easily run Llama 3 on Intel GPU using `llama.cpp` and `Ollama` with IPEX-LLM. + +See the demo of running Llama-3-8B-Instruct on Intel Arc GPU using `Ollama` below. + + + +## Quick Start +This quickstart guide walks you through how to run Llama 3 on Intel GPU using `llama.cpp` / `Ollama` with IPEX-LLM. + +### 1. Run Llama 3 using llama.cpp + +#### 1.1 Install IPEX-LLM for llama.cpp and Initialize + +Visit [Run llama.cpp with IPEX-LLM on Intel GPU Guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html), and follow the instructions in section [Prerequisites](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html#prerequisites) to setup and section [Install IPEX-LLM for llama.cpp](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html#install-ipex-llm-for-llama-cpp) to install the IPEX-LLM with llama.cpp binaries, then follow the instructions in section [Initialize llama.cpp with IPEX-LLM](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html#prerequisites) to initialize. + +**After above steps, you should have created a conda environment, named `llm-cpp` for instance and have llama.cpp binaries in your current directory.** + +**Now you can use these executable files by standard llama.cpp usage.** + +#### 1.2 Download Llama3 + +There already are some GGUF models of Llama3 in community, here we take [Meta-Llama-3-8B-Instruct-GGUF](https://huggingface.co/lmstudio-community/Meta-Llama-3-8B-Instruct-GGUF) for example. + +Suppose you have downloaded a [Meta-Llama-3-8B-Instruct-Q4_K_M.gguf](https://huggingface.co/lmstudio-community/Meta-Llama-3-8B-Instruct-GGUF/resolve/main/Meta-Llama-3-8B-Instruct-Q4_K_M.gguf) model from [Meta-Llama-3-8B-Instruct-GGUF](https://huggingface.co/lmstudio-community/Meta-Llama-3-8B-Instruct-GGUF) and put it under ``. + +#### 1.3 Run Llama3 on Intel GPU using llama.cpp + +Under your current directory, exceuting below command to do inference with Llama3: + +```eval_rst +.. tabs:: + .. tab:: Linux + + .. code-block:: bash + + ./main -m /Meta-Llama-3-8B-Instruct-Q4_K_M.gguf -n 32 --prompt "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun doing something" -t 8 -e -ngl 33 --color --no-mmap + + .. tab:: Windows + + Please run the following command in Anaconda Prompt. + + .. code-block:: bash + + main -ngl 33 -m /Meta-Llama-3-8B-Instruct-Q4_K_M.gguf -n 32 --prompt "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun doing something" -e -ngl 33 --color --no-mmap +``` + +Under your current directory, you can also exceute below command to have interative chat with Llama3: + +```eval_rst +.. tabs:: + .. tab:: Linux + + .. code-block:: bash + + ./main -ngl 33 -c 0 --interactive-first --color -e --in-prefix '<|start_header_id|>user<|end_header_id|>\n\n' --in-suffix '<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n' -r '<|eot_id|>' -m /Meta-Llama-3-8B-Instruct-Q4_K_M.gguf + + .. tab:: Windows + + Please run the following command in Anaconda Prompt. + + .. code-block:: bash + + main -ngl 33 -c 0 --interactive-first --color -e --in-prefix '<|start_header_id|>user<|end_header_id|>\n\n' --in-suffix '<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n' -r '<|eot_id|>' -m /Meta-Llama-3-8B-Instruct-Q4_K_M.gguf +``` + +Below is a sample output on Intel Arc GPU: + + + +### 2. Run Llama3 using Ollama + +#### 2.1 Install IPEX-LLM for Ollama and Initialize + +Visit [Run Ollama with IPEX-LLM on Intel GPU](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/ollama_quickstart.html), and follow the instructions in section [Install IPEX-LLM for llama.cpp](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html#install-ipex-llm-for-llama-cpp) to install the IPEX-LLM with Ollama binary, then follow the instructions in section [Initialize Ollama](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/ollama_quickstart.html#initialize-ollama) to initialize. + +**After above steps, you should have created a conda environment, named `llm-cpp` for instance and have ollama binary file in your current directory.** + +**Now you can use this executable file by standard Ollama usage.** + +#### 2.2 Run Llama3 on Intel GPU using Ollama + +[ollama/ollama](https://github.com/ollama/ollama) has alreadly added [Llama3](https://ollama.com/library/llama3) into its library, so it's really easy to run Llama3 using ollama now. + +##### 2.2.1 Run Ollama Serve + +Launch the Ollama service: + +```eval_rst +.. tabs:: + .. tab:: Linux + + .. code-block:: bash + + export no_proxy=localhost,127.0.0.1 + export ZES_ENABLE_SYSMAN=1 + export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 + export OLLAMA_NUM_GPU=999 + source /opt/intel/oneapi/setvars.sh + + ./ollama serve + + .. tab:: Windows + + Please run the following command in Anaconda Prompt. + + .. code-block:: bash + + set no_proxy=localhost,127.0.0.1 + set ZES_ENABLE_SYSMAN=1 + set OLLAMA_NUM_GPU=999 + call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" + + ollama serve + +``` + +```eval_rst +.. note:: + + To allow the service to accept connections from all IP addresses, use `OLLAMA_HOST=0.0.0.0 ./ollama serve` instead of just `./ollama serve`. +``` + +#### 2.2.2 Using Ollama Run Llama3 + +Keep the Ollama service on and open another terminal and run llama3 with `ollama run`: + +```eval_rst +.. tabs:: + .. tab:: Linux + + .. code-block:: bash + + export no_proxy=localhost,127.0.0.1 + ./ollama run llama3:8b-instruct-q4_K_M + + .. tab:: Windows + + Please run the following command in Anaconda Prompt. + + .. code-block:: bash + + set no_proxy=localhost,127.0.0.1 + ollama run llama3:8b-instruct-q4_K_M +``` + +```eval_rst +.. note:: + + Here we just take `llama3:8b-instruct-q4_K_M` for example, you can replace it with any other Llama3 model you want. +``` + +Below is a sample output on Intel Arc GPU : +