Add qwen vl CPU example (#9221)
* eee * add examples on CPU and GPU * fix * fix * optimize model examples * add Qwen-VL-Chat CPU example * Add Qwen-VL CPU example * fix optimize problem * fix error * Have updated, benchmark fix removed from this PR * add generate API example * Change formats in qwen-vl example * Add CPU transformer int4 example for qwen-vl * fix repo-id problem and add Readme * change picture url * Remove unnecessary file --------- Co-authored-by: Yuwen Hu <yuwen.hu@intel.com>
This commit is contained in:
		
							parent
							
								
									f597a9d4f5
								
							
						
					
					
						commit
						a6a8afc47e
					
				
					 8 changed files with 357 additions and 0 deletions
				
			
		| 
						 | 
				
			
			@ -153,6 +153,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
 | 
			
		|||
| Whisper    | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/whisper)   | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/whisper)    |
 | 
			
		||||
| Phi-1_5    | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/phi-1_5)   | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/phi-1_5)    |
 | 
			
		||||
| Flan-t5    | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/flan-t5)   | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/flan-t5)    |
 | 
			
		||||
| Qwen-VL    | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen-vl)   |    |
 | 
			
		||||
 | 
			
		||||
***For more details, please refer to the `bigdl-llm` [Document](https://test-bigdl-llm.readthedocs.io/en/main/doc/LLM/index.html), [Readme](python/llm), [Tutorial](https://github.com/intel-analytics/bigdl-llm-tutorial) and [API Doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/LLM/index.html).***
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -60,6 +60,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
 | 
			
		|||
| Whisper    | [link](example/CPU/HF-Transformers-AutoModels/Model/whisper)   | [link](example/GPU/HF-Transformers-AutoModels/Model/whisper)    |
 | 
			
		||||
| Phi-1_5    | [link](example/CPU/HF-Transformers-AutoModels/Model/phi-1_5)   | [link](example/GPU/HF-Transformers-AutoModels/Model/phi-1_5)    |
 | 
			
		||||
| Flan-t5    | [link](example/CPU/HF-Transformers-AutoModels/Model/flan-t5)   | [link](example/GPU/HF-Transformers-AutoModels/Model/flan-t5)    |
 | 
			
		||||
| Qwen-VL    | [link](example/CPU/HF-Transformers-AutoModels/Model/qwen-vl)   |   |
 | 
			
		||||
 | 
			
		||||
### Working with `bigdl-llm`
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -25,6 +25,8 @@ You can use BigDL-LLM to run any Huggingface Transformer models with INT4 optimi
 | 
			
		|||
| Replit    | [link](replit)    |
 | 
			
		||||
| Mistral   | [link](mistral)   |
 | 
			
		||||
| Flan-t5   | [link](flan-t5)   |
 | 
			
		||||
| Phi-1_5   | [link](phi-1_5)   |
 | 
			
		||||
| Qwen-VL   | [link](qwen-vl)   |
 | 
			
		||||
 | 
			
		||||
## Recommended Requirements
 | 
			
		||||
To run the examples, we recommend using Intel® Xeon® processors (server), or >= 12th Gen Intel® Core™ processor (client).
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -0,0 +1,91 @@
 | 
			
		|||
# Qwen-VL
 | 
			
		||||
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Qwen-VL models. For illustration purposes, we utilize the [Qwen/Qwen-VL-Chat](https://huggingface.co/Qwen/Qwen-VL-Chat) as a reference Qwen-VL model.
 | 
			
		||||
 | 
			
		||||
## Requirements
 | 
			
		||||
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
 | 
			
		||||
 | 
			
		||||
## Example: Multimodal chat using `chat()` API
 | 
			
		||||
In the example [chat.py](./chat.py), we show a basic use case for a Qwen-VL model to start a multimodal chat using `chat()` API, with BigDL-LLM INT4 optimizations.
 | 
			
		||||
### 1. Install
 | 
			
		||||
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
 | 
			
		||||
 | 
			
		||||
After installing conda, create a Python environment for BigDL-LLM:
 | 
			
		||||
```bash
 | 
			
		||||
conda create -n llm python=3.9 # recommend to use Python 3.9
 | 
			
		||||
conda activate llm
 | 
			
		||||
 | 
			
		||||
pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
 | 
			
		||||
 | 
			
		||||
pip install accelerate tiktoken einops transformers_stream_generator==0.0.4 scipy torchvision pillow tensorboard matplotlib # additional package required for Qwen-VL-Chat to conduct generation
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 2. Run
 | 
			
		||||
After setting up the Python environment, you could run the example by following steps.
 | 
			
		||||
 | 
			
		||||
#### 2.1 Client
 | 
			
		||||
On client Windows machines, it is recommended to run directly with full utilization of all cores:
 | 
			
		||||
```powershell
 | 
			
		||||
python ./chat.py
 | 
			
		||||
```
 | 
			
		||||
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
 | 
			
		||||
 | 
			
		||||
#### 2.2 Server
 | 
			
		||||
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
 | 
			
		||||
 | 
			
		||||
E.g. on Linux,
 | 
			
		||||
```bash
 | 
			
		||||
# set BigDL-Nano env variables
 | 
			
		||||
source bigdl-nano-init
 | 
			
		||||
 | 
			
		||||
# e.g. for a server with 48 cores per socket
 | 
			
		||||
export OMP_NUM_THREADS=48
 | 
			
		||||
numactl -C 0-47 -m 0 python ./chat.py
 | 
			
		||||
```
 | 
			
		||||
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
 | 
			
		||||
 | 
			
		||||
#### 2.3 Arguments Info
 | 
			
		||||
In the example, several arguments can be passed to satisfy your requirements:
 | 
			
		||||
 | 
			
		||||
- `--repo-id-or-model-path`: str, argument defining the huggingface repo id for the Qwen-VL model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'Qwen/Qwen-VL-Chat'`.
 | 
			
		||||
- `--n-predict`: int, argument defining the max number of tokens to predict. It is default to be `32`.
 | 
			
		||||
  
 | 
			
		||||
In every session, image and text can be entered into cmd (user can skip the input by type **'Enter'**) ; please type **'exit'** anytime you want to quit the dialouge.
 | 
			
		||||
 | 
			
		||||
Every image output will be named as the round of session and placed under the current directory.
 | 
			
		||||
 | 
			
		||||
#### 2.4 Sample Chat
 | 
			
		||||
#### [Qwen/Qwen-VL-Chat](https://huggingface.co/Qwen/Qwen-VL-Chat)
 | 
			
		||||
 | 
			
		||||
```log
 | 
			
		||||
-------------------- Session 1 --------------------
 | 
			
		||||
 Please input a picture: https://images.unsplash.com/photo-1533738363-b7f9aef128ce?auto=format&fit=crop&q=60&w=500&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxzZWFyY2h8NHx8Y2F0fGVufDB8fDB8fHwy
 | 
			
		||||
 Please enter the text: 这是什么
 | 
			
		||||
---------- Response ----------
 | 
			
		||||
图中是一只戴着墨镜的酷炫猫咪,正坐在窗边,看着窗外。 
 | 
			
		||||
 | 
			
		||||
-------------------- Session 2 --------------------
 | 
			
		||||
 Please input a picture: 
 | 
			
		||||
 Please enter the text: 这只猫猫多大了?
 | 
			
		||||
---------- Response ----------
 | 
			
		||||
由于只猫猫戴着太阳镜,无法判断年龄,但可以猜测它应该是一只成年猫猫,已经成年。 
 | 
			
		||||
 | 
			
		||||
-------------------- Session 3 --------------------
 | 
			
		||||
 Please input a picture: 
 | 
			
		||||
 Please enter the text: 在图中检测框出猫猫的墨镜
 | 
			
		||||
---------- Response ----------
 | 
			
		||||
<ref>猫猫的墨镜</ref><box>(398,313),(994,506)</box> 
 | 
			
		||||
 | 
			
		||||
-------------------- Session 4 --------------------
 | 
			
		||||
 Please input a picture: exit
 | 
			
		||||
```
 | 
			
		||||
The sample input image in Session 1 is (which is fetched from [here](https://images.unsplash.com/photo-1533738363-b7f9aef128ce?auto=format&fit=crop&q=60&w=500&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxzZWFyY2h8NHx8Y2F0fGVufDB8fDB8fHwy)):
 | 
			
		||||
 | 
			
		||||
<a href="https://llm-assets.readthedocs.io/en/latest/_images/qwen-vl-example-input.jpg"><img width=250px src="https://llm-assets.readthedocs.io/en/latest/_images/qwen-vl-example-input.jpg" ></a>
 | 
			
		||||
 | 
			
		||||
The sample output image in Session 3 is:
 | 
			
		||||
 | 
			
		||||
<a href="https://llm-assets.readthedocs.io/en/latest/_images/qwen-vl-example-output.png"><img width=250px src="https://llm-assets.readthedocs.io/en/latest/_images/qwen-vl-example-output.png" ></a>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,85 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
 | 
			
		||||
from transformers import AutoTokenizer, LlamaTokenizer
 | 
			
		||||
from transformers.generation import GenerationConfig
 | 
			
		||||
import torch
 | 
			
		||||
import time
 | 
			
		||||
import os
 | 
			
		||||
import argparse
 | 
			
		||||
from bigdl.llm import optimize_model
 | 
			
		||||
torch.manual_seed(1234)
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for Qwen-VL model')
 | 
			
		||||
    parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen-VL-Chat",
 | 
			
		||||
                        help='The huggingface repo id for the Qwen-VL model to be downloaded'
 | 
			
		||||
                             ', or the path to the huggingface checkpoint folder')
 | 
			
		||||
    parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict')
 | 
			
		||||
    
 | 
			
		||||
    current_path = os.path.dirname(os.path.abspath(__file__))
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path  
 | 
			
		||||
        
 | 
			
		||||
    # Load model
 | 
			
		||||
    # For successful BigDL-LLM optimization on Qwen-VL-Chat, skip the 'c_fc' and 'out_proj' modules during optimization
 | 
			
		||||
    model = AutoModelForCausalLM.from_pretrained(model_path, 
 | 
			
		||||
                                                 load_in_4bit=True, 
 | 
			
		||||
                                                 device_map="cpu", 
 | 
			
		||||
                                                 trust_remote_code=True, 
 | 
			
		||||
                                                 modules_to_not_convert=['c_fc', 'out_proj'] )
 | 
			
		||||
 | 
			
		||||
    # Specify hyperparameters for generation (No need to do this if you are using transformers>=4.32.0)
 | 
			
		||||
    model.generation_config = GenerationConfig.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    
 | 
			
		||||
    # Load tokenizer
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
 | 
			
		||||
    # Session ID
 | 
			
		||||
    session_id = 1
 | 
			
		||||
 | 
			
		||||
    while True:
 | 
			
		||||
      print('-'*20, 'Session %d' % session_id, '-'*20)
 | 
			
		||||
      image_input = input(f' Please input a picture: ')
 | 
			
		||||
      if image_input.lower() == 'exit' : # type 'exit' to quit the dialouge
 | 
			
		||||
         break
 | 
			
		||||
 | 
			
		||||
      text_input = input(f' Please enter the text: ')
 | 
			
		||||
      if text_input.lower() == 'exit' : # type 'exit' to quit the dialouge
 | 
			
		||||
         break
 | 
			
		||||
      
 | 
			
		||||
      if session_id == 1:
 | 
			
		||||
         history = None
 | 
			
		||||
 | 
			
		||||
      all_input = [{'image': image_input}, {'text': text_input}]
 | 
			
		||||
      input_list = [_input for _input in all_input if list(_input.values())[0] != '']
 | 
			
		||||
 | 
			
		||||
      if len(input_list) == 0:
 | 
			
		||||
         print("Input list should not be empty. Please try again with valid input.")
 | 
			
		||||
         continue
 | 
			
		||||
      
 | 
			
		||||
      query = tokenizer.from_list_format(input_list)
 | 
			
		||||
      response, history = model.chat(tokenizer, query = query, history = history)
 | 
			
		||||
 | 
			
		||||
      print('-'*10, 'Response', '-'*10)
 | 
			
		||||
      print(response, '\n')
 | 
			
		||||
 | 
			
		||||
      image = tokenizer.draw_bbox_on_latest_picture(response, history)
 | 
			
		||||
      if image is not None:
 | 
			
		||||
         image.save(os.path.join(current_path, f'Session_{session_id}.png'), )
 | 
			
		||||
 | 
			
		||||
      session_id += 1
 | 
			
		||||
| 
						 | 
				
			
			@ -11,6 +11,8 @@ You can use `optimize_model` API to accelerate general PyTorch models on Intel s
 | 
			
		|||
| Bark           | [link](bark)                                             |
 | 
			
		||||
| Mistral        | [link](mistral)                                          |
 | 
			
		||||
| Flan-t5        | [link](flan-t5)                                          |
 | 
			
		||||
| Phi-1_5        | [link](phi-1_5)                                          |
 | 
			
		||||
| Qwen-VL        | [link](qwen-vl)                                          |
 | 
			
		||||
 | 
			
		||||
## Recommended Requirements
 | 
			
		||||
To run the examples, we recommend using Intel® Xeon® processors (server), or >= 12th Gen Intel® Core™ processor (client).
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -0,0 +1,90 @@
 | 
			
		|||
# Qwen-VL
 | 
			
		||||
In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate Qwen-VL models. For illustration purposes, we utilize the [Qwen/Qwen-VL-Chat](https://huggingface.co/Qwen/Qwen-VL-Chat) as a reference Qwen-VL model.
 | 
			
		||||
 | 
			
		||||
## Requirements
 | 
			
		||||
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
 | 
			
		||||
 | 
			
		||||
## Example: Multimodal chat using `chat()` API
 | 
			
		||||
In the example [chat.py](./chat.py), we show a basic use case for a Qwen-VL model to start a multimodal chat using `chat()` API, with BigDL-LLM 'optimize_model' API.
 | 
			
		||||
### 1. Install
 | 
			
		||||
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
 | 
			
		||||
 | 
			
		||||
After installing conda, create a Python environment for BigDL-LLM:
 | 
			
		||||
```bash
 | 
			
		||||
conda create -n llm python=3.9 # recommend to use Python 3.9
 | 
			
		||||
conda activate llm
 | 
			
		||||
 | 
			
		||||
pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
 | 
			
		||||
 | 
			
		||||
pip install accelerate tiktoken einops transformers_stream_generator==0.0.4 scipy torchvision pillow tensorboard matplotlib # additional package required for Qwen-VL-Chat to conduct generation
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 2. Run
 | 
			
		||||
After setting up the Python environment, you could run the example by following steps.
 | 
			
		||||
 | 
			
		||||
#### 2.1 Client
 | 
			
		||||
On client Windows machines, it is recommended to run directly with full utilization of all cores:
 | 
			
		||||
```powershell
 | 
			
		||||
python ./chat.py
 | 
			
		||||
```
 | 
			
		||||
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
 | 
			
		||||
 | 
			
		||||
#### 2.2 Server
 | 
			
		||||
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
 | 
			
		||||
 | 
			
		||||
E.g. on Linux,
 | 
			
		||||
```bash
 | 
			
		||||
# set BigDL-Nano env variables
 | 
			
		||||
source bigdl-nano-init
 | 
			
		||||
 | 
			
		||||
# e.g. for a server with 48 cores per socket
 | 
			
		||||
export OMP_NUM_THREADS=48
 | 
			
		||||
numactl -C 0-47 -m 0 python ./chat.py
 | 
			
		||||
```
 | 
			
		||||
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
 | 
			
		||||
 | 
			
		||||
#### 2.3 Arguments Info
 | 
			
		||||
In the example, several arguments can be passed to satisfy your requirements:
 | 
			
		||||
 | 
			
		||||
- `--repo-id-or-model-path`: str, argument defining the huggingface repo id for the Qwen-VL model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'Qwen/Qwen-VL-Chat'`.
 | 
			
		||||
- `--n-predict`: int, argument defining the max number of tokens to predict. It is default to be `32`.
 | 
			
		||||
  
 | 
			
		||||
In every session, image and text can be entered into cmd (user can skip the input by type **'Enter'**) ; please type **'exit'** anytime you want to quit the dialouge.
 | 
			
		||||
 | 
			
		||||
Every image output will be named as the round of session and placed under the current directory.
 | 
			
		||||
 | 
			
		||||
#### 2.4 Sample Chat
 | 
			
		||||
#### [Qwen/Qwen-VL-Chat](https://huggingface.co/Qwen/Qwen-VL-Chat)
 | 
			
		||||
 | 
			
		||||
```log
 | 
			
		||||
-------------------- Session 1 --------------------
 | 
			
		||||
 Please input a picture: https://images.unsplash.com/photo-1533738363-b7f9aef128ce?auto=format&fit=crop&q=60&w=500&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxzZWFyY2h8NHx8Y2F0fGVufDB8fDB8fHwy
 | 
			
		||||
 Please enter the text: 这是什么
 | 
			
		||||
---------- Response ----------
 | 
			
		||||
图中是一只戴着墨镜的酷炫猫咪,正坐在窗边,看着窗外。 
 | 
			
		||||
 | 
			
		||||
-------------------- Session 2 --------------------
 | 
			
		||||
 Please input a picture: 
 | 
			
		||||
 Please enter the text: 这只猫猫多大了?
 | 
			
		||||
---------- Response ----------
 | 
			
		||||
由于只猫猫戴着太阳镜,无法判断年龄,但可以猜测它应该是一只成年猫猫,已经成年。 
 | 
			
		||||
 | 
			
		||||
-------------------- Session 3 --------------------
 | 
			
		||||
 Please input a picture: 
 | 
			
		||||
 Please enter the text: 在图中检测框出猫猫的墨镜
 | 
			
		||||
---------- Response ----------
 | 
			
		||||
<ref>猫猫的墨镜</ref><box>(398,313),(994,506)</box> 
 | 
			
		||||
 | 
			
		||||
-------------------- Session 4 --------------------
 | 
			
		||||
 Please input a picture: exit
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
The sample input image in Session 1 is (which is fetched from [here](https://images.unsplash.com/photo-1533738363-b7f9aef128ce?auto=format&fit=crop&q=60&w=500&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxzZWFyY2h8NHx8Y2F0fGVufDB8fDB8fHwy)):
 | 
			
		||||
 | 
			
		||||
<a href="https://llm-assets.readthedocs.io/en/latest/_images/qwen-vl-example-input.jpg"><img width=250px src="https://llm-assets.readthedocs.io/en/latest/_images/qwen-vl-example-input.jpg" ></a>
 | 
			
		||||
 | 
			
		||||
The sample output image in Session 3 is:
 | 
			
		||||
 | 
			
		||||
<a href="https://llm-assets.readthedocs.io/en/latest/_images/qwen-vl-example-output.png"><img width=250px  src="https://llm-assets.readthedocs.io/en/latest/_images/qwen-vl-example-output.png" ></a>
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										85
									
								
								python/llm/example/CPU/PyTorch-Models/Model/qwen-vl/chat.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										85
									
								
								python/llm/example/CPU/PyTorch-Models/Model/qwen-vl/chat.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,85 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
from transformers import AutoModelForCausalLM, AutoTokenizer
 | 
			
		||||
from transformers.generation import GenerationConfig
 | 
			
		||||
import torch
 | 
			
		||||
import time
 | 
			
		||||
import os
 | 
			
		||||
import argparse
 | 
			
		||||
from bigdl.llm import optimize_model
 | 
			
		||||
torch.manual_seed(1234)
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for Qwen-VL model')
 | 
			
		||||
    parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen-VL-Chat",
 | 
			
		||||
                        help='The huggingface repo id for the Qwen-VL model to be downloaded'
 | 
			
		||||
                             ', or the path to the huggingface checkpoint folder')
 | 
			
		||||
    parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict')
 | 
			
		||||
    
 | 
			
		||||
    current_path = os.path.dirname(os.path.abspath(__file__))
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path
 | 
			
		||||
 | 
			
		||||
    # Load model
 | 
			
		||||
    model = AutoModelForCausalLM.from_pretrained(model_path, device_map="cpu",  trust_remote_code=True)
 | 
			
		||||
 | 
			
		||||
    # With only one line to enable BigDL-LLM optimization on model
 | 
			
		||||
    # For successful BigDL-LLM optimization on Qwen-VL-Chat, skip the 'c_fc' and 'out_proj' modules during optimization
 | 
			
		||||
    model = optimize_model(model, 
 | 
			
		||||
                           low_bit='sym_int4', 
 | 
			
		||||
                           modules_to_not_convert=['c_fc', 'out_proj'])
 | 
			
		||||
 | 
			
		||||
    # Specify hyperparameters for generation (No need to do this if you are using transformers>=4.32.0)
 | 
			
		||||
    model.generation_config = GenerationConfig.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    
 | 
			
		||||
    # Load tokenizer
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
 | 
			
		||||
    # Session ID
 | 
			
		||||
    session_id = 1
 | 
			
		||||
 | 
			
		||||
    while True:
 | 
			
		||||
      print('-'*20, 'Session %d' % session_id, '-'*20)
 | 
			
		||||
      image_input = input(f' Please input a picture: ')
 | 
			
		||||
      if image_input.lower() == 'exit' : # type 'exit' to quit the dialouge
 | 
			
		||||
         break
 | 
			
		||||
 | 
			
		||||
      text_input = input(f' Please enter the text: ')
 | 
			
		||||
      if text_input.lower() == 'exit' : # type 'exit' to quit the dialouge
 | 
			
		||||
         break
 | 
			
		||||
      
 | 
			
		||||
      if session_id == 1:
 | 
			
		||||
         history = None
 | 
			
		||||
 | 
			
		||||
      all_input = [{'image': image_input}, {'text': text_input}]
 | 
			
		||||
      input_list = [_input for _input in all_input if list(_input.values())[0] != '']
 | 
			
		||||
 | 
			
		||||
      if len(input_list) == 0:
 | 
			
		||||
         print("Input list should not be empty. Please try again with valid input.")
 | 
			
		||||
         continue
 | 
			
		||||
      
 | 
			
		||||
      query = tokenizer.from_list_format(input_list)
 | 
			
		||||
      response, history = model.chat(tokenizer, query = query, history = history)
 | 
			
		||||
 | 
			
		||||
      print('-'*10, 'Response', '-'*10)
 | 
			
		||||
      print(response, '\n')
 | 
			
		||||
 | 
			
		||||
      image = tokenizer.draw_bbox_on_latest_picture(response, history)
 | 
			
		||||
      if image is not None:
 | 
			
		||||
         image.save(os.path.join(current_path, f'Session_{session_id}.png'), )
 | 
			
		||||
 | 
			
		||||
      session_id += 1
 | 
			
		||||
		Loading…
	
		Reference in a new issue