diff --git a/README.md b/README.md
index ce84f188..ff02fb83 100644
--- a/README.md
+++ b/README.md
@@ -153,6 +153,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
| Whisper | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/whisper) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/whisper) |
| Phi-1_5 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/phi-1_5) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/phi-1_5) |
| Flan-t5 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/flan-t5) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/flan-t5) |
+| Qwen-VL | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen-vl) | |
***For more details, please refer to the `bigdl-llm` [Document](https://test-bigdl-llm.readthedocs.io/en/main/doc/LLM/index.html), [Readme](python/llm), [Tutorial](https://github.com/intel-analytics/bigdl-llm-tutorial) and [API Doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/LLM/index.html).***
diff --git a/python/llm/README.md b/python/llm/README.md
index 4fcab1e4..6032a992 100644
--- a/python/llm/README.md
+++ b/python/llm/README.md
@@ -60,6 +60,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
| Whisper | [link](example/CPU/HF-Transformers-AutoModels/Model/whisper) | [link](example/GPU/HF-Transformers-AutoModels/Model/whisper) |
| Phi-1_5 | [link](example/CPU/HF-Transformers-AutoModels/Model/phi-1_5) | [link](example/GPU/HF-Transformers-AutoModels/Model/phi-1_5) |
| Flan-t5 | [link](example/CPU/HF-Transformers-AutoModels/Model/flan-t5) | [link](example/GPU/HF-Transformers-AutoModels/Model/flan-t5) |
+| Qwen-VL | [link](example/CPU/HF-Transformers-AutoModels/Model/qwen-vl) | |
### Working with `bigdl-llm`
diff --git a/python/llm/example/CPU/HF-Transformers-AutoModels/Model/README.md b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/README.md
index 92cb9103..f7bd3b55 100644
--- a/python/llm/example/CPU/HF-Transformers-AutoModels/Model/README.md
+++ b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/README.md
@@ -25,6 +25,8 @@ You can use BigDL-LLM to run any Huggingface Transformer models with INT4 optimi
| Replit | [link](replit) |
| Mistral | [link](mistral) |
| Flan-t5 | [link](flan-t5) |
+| Phi-1_5 | [link](phi-1_5) |
+| Qwen-VL | [link](qwen-vl) |
## Recommended Requirements
To run the examples, we recommend using Intel® Xeon® processors (server), or >= 12th Gen Intel® Core™ processor (client).
diff --git a/python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen-vl/README.md b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen-vl/README.md
new file mode 100644
index 00000000..8c04bbb6
--- /dev/null
+++ b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen-vl/README.md
@@ -0,0 +1,91 @@
+# Qwen-VL
+In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Qwen-VL models. For illustration purposes, we utilize the [Qwen/Qwen-VL-Chat](https://huggingface.co/Qwen/Qwen-VL-Chat) as a reference Qwen-VL model.
+
+## Requirements
+To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
+
+## Example: Multimodal chat using `chat()` API
+In the example [chat.py](./chat.py), we show a basic use case for a Qwen-VL model to start a multimodal chat using `chat()` API, with BigDL-LLM INT4 optimizations.
+### 1. Install
+We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
+
+After installing conda, create a Python environment for BigDL-LLM:
+```bash
+conda create -n llm python=3.9 # recommend to use Python 3.9
+conda activate llm
+
+pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
+
+pip install accelerate tiktoken einops transformers_stream_generator==0.0.4 scipy torchvision pillow tensorboard matplotlib # additional package required for Qwen-VL-Chat to conduct generation
+
+```
+
+### 2. Run
+After setting up the Python environment, you could run the example by following steps.
+
+#### 2.1 Client
+On client Windows machines, it is recommended to run directly with full utilization of all cores:
+```powershell
+python ./chat.py
+```
+More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
+
+#### 2.2 Server
+For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
+
+E.g. on Linux,
+```bash
+# set BigDL-Nano env variables
+source bigdl-nano-init
+
+# e.g. for a server with 48 cores per socket
+export OMP_NUM_THREADS=48
+numactl -C 0-47 -m 0 python ./chat.py
+```
+More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
+
+#### 2.3 Arguments Info
+In the example, several arguments can be passed to satisfy your requirements:
+
+- `--repo-id-or-model-path`: str, argument defining the huggingface repo id for the Qwen-VL model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'Qwen/Qwen-VL-Chat'`.
+- `--n-predict`: int, argument defining the max number of tokens to predict. It is default to be `32`.
+
+In every session, image and text can be entered into cmd (user can skip the input by type **'Enter'**) ; please type **'exit'** anytime you want to quit the dialouge.
+
+Every image output will be named as the round of session and placed under the current directory.
+
+#### 2.4 Sample Chat
+#### [Qwen/Qwen-VL-Chat](https://huggingface.co/Qwen/Qwen-VL-Chat)
+
+```log
+-------------------- Session 1 --------------------
+ Please input a picture: https://images.unsplash.com/photo-1533738363-b7f9aef128ce?auto=format&fit=crop&q=60&w=500&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxzZWFyY2h8NHx8Y2F0fGVufDB8fDB8fHwy
+ Please enter the text: 这是什么
+---------- Response ----------
+图中是一只戴着墨镜的酷炫猫咪,正坐在窗边,看着窗外。
+
+-------------------- Session 2 --------------------
+ Please input a picture:
+ Please enter the text: 这只猫猫多大了?
+---------- Response ----------
+由于只猫猫戴着太阳镜,无法判断年龄,但可以猜测它应该是一只成年猫猫,已经成年。
+
+-------------------- Session 3 --------------------
+ Please input a picture:
+ Please enter the text: 在图中检测框出猫猫的墨镜
+---------- Response ----------
+[猫猫的墨镜](398,313),(994,506)
+
+-------------------- Session 4 --------------------
+ Please input a picture: exit
+```
+The sample input image in Session 1 is (which is fetched from [here](https://images.unsplash.com/photo-1533738363-b7f9aef128ce?auto=format&fit=crop&q=60&w=500&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxzZWFyY2h8NHx8Y2F0fGVufDB8fDB8fHwy)):
+
+
+
+The sample output image in Session 3 is:
+
+
+
+
+
diff --git a/python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen-vl/chat.py b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen-vl/chat.py
new file mode 100644
index 00000000..6c017755
--- /dev/null
+++ b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen-vl/chat.py
@@ -0,0 +1,85 @@
+#
+# Copyright 2016 The BigDL Authors.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
+from transformers import AutoTokenizer, LlamaTokenizer
+from transformers.generation import GenerationConfig
+import torch
+import time
+import os
+import argparse
+from bigdl.llm import optimize_model
+torch.manual_seed(1234)
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for Qwen-VL model')
+ parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen-VL-Chat",
+ help='The huggingface repo id for the Qwen-VL model to be downloaded'
+ ', or the path to the huggingface checkpoint folder')
+ parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict')
+
+ current_path = os.path.dirname(os.path.abspath(__file__))
+ args = parser.parse_args()
+ model_path = args.repo_id_or_model_path
+
+ # Load model
+ # For successful BigDL-LLM optimization on Qwen-VL-Chat, skip the 'c_fc' and 'out_proj' modules during optimization
+ model = AutoModelForCausalLM.from_pretrained(model_path,
+ load_in_4bit=True,
+ device_map="cpu",
+ trust_remote_code=True,
+ modules_to_not_convert=['c_fc', 'out_proj'] )
+
+ # Specify hyperparameters for generation (No need to do this if you are using transformers>=4.32.0)
+ model.generation_config = GenerationConfig.from_pretrained(model_path, trust_remote_code=True)
+
+ # Load tokenizer
+ tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
+
+ # Session ID
+ session_id = 1
+
+ while True:
+ print('-'*20, 'Session %d' % session_id, '-'*20)
+ image_input = input(f' Please input a picture: ')
+ if image_input.lower() == 'exit' : # type 'exit' to quit the dialouge
+ break
+
+ text_input = input(f' Please enter the text: ')
+ if text_input.lower() == 'exit' : # type 'exit' to quit the dialouge
+ break
+
+ if session_id == 1:
+ history = None
+
+ all_input = [{'image': image_input}, {'text': text_input}]
+ input_list = [_input for _input in all_input if list(_input.values())[0] != '']
+
+ if len(input_list) == 0:
+ print("Input list should not be empty. Please try again with valid input.")
+ continue
+
+ query = tokenizer.from_list_format(input_list)
+ response, history = model.chat(tokenizer, query = query, history = history)
+
+ print('-'*10, 'Response', '-'*10)
+ print(response, '\n')
+
+ image = tokenizer.draw_bbox_on_latest_picture(response, history)
+ if image is not None:
+ image.save(os.path.join(current_path, f'Session_{session_id}.png'), )
+
+ session_id += 1
diff --git a/python/llm/example/CPU/PyTorch-Models/Model/README.md b/python/llm/example/CPU/PyTorch-Models/Model/README.md
index 3cee8c45..40288dd4 100644
--- a/python/llm/example/CPU/PyTorch-Models/Model/README.md
+++ b/python/llm/example/CPU/PyTorch-Models/Model/README.md
@@ -11,6 +11,8 @@ You can use `optimize_model` API to accelerate general PyTorch models on Intel s
| Bark | [link](bark) |
| Mistral | [link](mistral) |
| Flan-t5 | [link](flan-t5) |
+| Phi-1_5 | [link](phi-1_5) |
+| Qwen-VL | [link](qwen-vl) |
## Recommended Requirements
To run the examples, we recommend using Intel® Xeon® processors (server), or >= 12th Gen Intel® Core™ processor (client).
diff --git a/python/llm/example/CPU/PyTorch-Models/Model/qwen-vl/README.md b/python/llm/example/CPU/PyTorch-Models/Model/qwen-vl/README.md
new file mode 100644
index 00000000..444929ff
--- /dev/null
+++ b/python/llm/example/CPU/PyTorch-Models/Model/qwen-vl/README.md
@@ -0,0 +1,90 @@
+# Qwen-VL
+In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate Qwen-VL models. For illustration purposes, we utilize the [Qwen/Qwen-VL-Chat](https://huggingface.co/Qwen/Qwen-VL-Chat) as a reference Qwen-VL model.
+
+## Requirements
+To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
+
+## Example: Multimodal chat using `chat()` API
+In the example [chat.py](./chat.py), we show a basic use case for a Qwen-VL model to start a multimodal chat using `chat()` API, with BigDL-LLM 'optimize_model' API.
+### 1. Install
+We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
+
+After installing conda, create a Python environment for BigDL-LLM:
+```bash
+conda create -n llm python=3.9 # recommend to use Python 3.9
+conda activate llm
+
+pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
+
+pip install accelerate tiktoken einops transformers_stream_generator==0.0.4 scipy torchvision pillow tensorboard matplotlib # additional package required for Qwen-VL-Chat to conduct generation
+
+```
+
+### 2. Run
+After setting up the Python environment, you could run the example by following steps.
+
+#### 2.1 Client
+On client Windows machines, it is recommended to run directly with full utilization of all cores:
+```powershell
+python ./chat.py
+```
+More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
+
+#### 2.2 Server
+For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
+
+E.g. on Linux,
+```bash
+# set BigDL-Nano env variables
+source bigdl-nano-init
+
+# e.g. for a server with 48 cores per socket
+export OMP_NUM_THREADS=48
+numactl -C 0-47 -m 0 python ./chat.py
+```
+More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
+
+#### 2.3 Arguments Info
+In the example, several arguments can be passed to satisfy your requirements:
+
+- `--repo-id-or-model-path`: str, argument defining the huggingface repo id for the Qwen-VL model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'Qwen/Qwen-VL-Chat'`.
+- `--n-predict`: int, argument defining the max number of tokens to predict. It is default to be `32`.
+
+In every session, image and text can be entered into cmd (user can skip the input by type **'Enter'**) ; please type **'exit'** anytime you want to quit the dialouge.
+
+Every image output will be named as the round of session and placed under the current directory.
+
+#### 2.4 Sample Chat
+#### [Qwen/Qwen-VL-Chat](https://huggingface.co/Qwen/Qwen-VL-Chat)
+
+```log
+-------------------- Session 1 --------------------
+ Please input a picture: https://images.unsplash.com/photo-1533738363-b7f9aef128ce?auto=format&fit=crop&q=60&w=500&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxzZWFyY2h8NHx8Y2F0fGVufDB8fDB8fHwy
+ Please enter the text: 这是什么
+---------- Response ----------
+图中是一只戴着墨镜的酷炫猫咪,正坐在窗边,看着窗外。
+
+-------------------- Session 2 --------------------
+ Please input a picture:
+ Please enter the text: 这只猫猫多大了?
+---------- Response ----------
+由于只猫猫戴着太阳镜,无法判断年龄,但可以猜测它应该是一只成年猫猫,已经成年。
+
+-------------------- Session 3 --------------------
+ Please input a picture:
+ Please enter the text: 在图中检测框出猫猫的墨镜
+---------- Response ----------
+[猫猫的墨镜](398,313),(994,506)
+
+-------------------- Session 4 --------------------
+ Please input a picture: exit
+```
+
+The sample input image in Session 1 is (which is fetched from [here](https://images.unsplash.com/photo-1533738363-b7f9aef128ce?auto=format&fit=crop&q=60&w=500&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxzZWFyY2h8NHx8Y2F0fGVufDB8fDB8fHwy)):
+
+
+
+The sample output image in Session 3 is:
+
+
+
diff --git a/python/llm/example/CPU/PyTorch-Models/Model/qwen-vl/chat.py b/python/llm/example/CPU/PyTorch-Models/Model/qwen-vl/chat.py
new file mode 100644
index 00000000..5502a697
--- /dev/null
+++ b/python/llm/example/CPU/PyTorch-Models/Model/qwen-vl/chat.py
@@ -0,0 +1,85 @@
+#
+# Copyright 2016 The BigDL Authors.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+from transformers import AutoModelForCausalLM, AutoTokenizer
+from transformers.generation import GenerationConfig
+import torch
+import time
+import os
+import argparse
+from bigdl.llm import optimize_model
+torch.manual_seed(1234)
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for Qwen-VL model')
+ parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen-VL-Chat",
+ help='The huggingface repo id for the Qwen-VL model to be downloaded'
+ ', or the path to the huggingface checkpoint folder')
+ parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict')
+
+ current_path = os.path.dirname(os.path.abspath(__file__))
+ args = parser.parse_args()
+ model_path = args.repo_id_or_model_path
+
+ # Load model
+ model = AutoModelForCausalLM.from_pretrained(model_path, device_map="cpu", trust_remote_code=True)
+
+ # With only one line to enable BigDL-LLM optimization on model
+ # For successful BigDL-LLM optimization on Qwen-VL-Chat, skip the 'c_fc' and 'out_proj' modules during optimization
+ model = optimize_model(model,
+ low_bit='sym_int4',
+ modules_to_not_convert=['c_fc', 'out_proj'])
+
+ # Specify hyperparameters for generation (No need to do this if you are using transformers>=4.32.0)
+ model.generation_config = GenerationConfig.from_pretrained(model_path, trust_remote_code=True)
+
+ # Load tokenizer
+ tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
+
+ # Session ID
+ session_id = 1
+
+ while True:
+ print('-'*20, 'Session %d' % session_id, '-'*20)
+ image_input = input(f' Please input a picture: ')
+ if image_input.lower() == 'exit' : # type 'exit' to quit the dialouge
+ break
+
+ text_input = input(f' Please enter the text: ')
+ if text_input.lower() == 'exit' : # type 'exit' to quit the dialouge
+ break
+
+ if session_id == 1:
+ history = None
+
+ all_input = [{'image': image_input}, {'text': text_input}]
+ input_list = [_input for _input in all_input if list(_input.values())[0] != '']
+
+ if len(input_list) == 0:
+ print("Input list should not be empty. Please try again with valid input.")
+ continue
+
+ query = tokenizer.from_list_format(input_list)
+ response, history = model.chat(tokenizer, query = query, history = history)
+
+ print('-'*10, 'Response', '-'*10)
+ print(response, '\n')
+
+ image = tokenizer.draw_bbox_on_latest_picture(response, history)
+ if image is not None:
+ image.save(os.path.join(current_path, f'Session_{session_id}.png'), )
+
+ session_id += 1