add ipex-llm custom kernel registration (#12648)
This commit is contained in:
		
							parent
							
								
									0b377100c5
								
							
						
					
					
						commit
						9f8b134889
					
				
					 1 changed files with 155 additions and 0 deletions
				
			
		
							
								
								
									
										155
									
								
								python/llm/src/ipex_llm/transformers/xpu_ops.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										155
									
								
								python/llm/src/ipex_llm/transformers/xpu_ops.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,155 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import xe_linear
 | 
			
		||||
import xe_batch
 | 
			
		||||
import xe_addons
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@torch.library.register_fake("ipex_llm::forward_new")
 | 
			
		||||
def _(x, weight, qtype, input_size):
 | 
			
		||||
    return torch.empty_like(x)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# @torch.library.register_fake("ipex_llm::dequant")
 | 
			
		||||
# def _(x, weight, qtype):
 | 
			
		||||
#     return ???
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@torch.library.register_fake("ipex_llm::mlp_forward_xpu")
 | 
			
		||||
def _(x, weight1, weight2, batch_size, state_size, output_size, act_type, qtype):
 | 
			
		||||
    return torch.empty_like(x)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# @torch.library.register_fake("ipex_llm::rwkv_linear_attention_v4")
 | 
			
		||||
# def _(time_decay, time_first, key, value, num_state, den_state, max_state)
 | 
			
		||||
    # return ???
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# @torch.library.register_fake("ipex_llm::rwkv_linear_attention_v5")
 | 
			
		||||
# def _(time_decay, time_first, receptance, key, value, state)
 | 
			
		||||
    # return ???
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# @torch.library.register_fake("ipex_llm::rwkv_time_shift")
 | 
			
		||||
# def _(hidden, shifted, mix):
 | 
			
		||||
    # return ???
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# @torch.library.register_fake("ipex_llm::dequantize_rows")
 | 
			
		||||
# def _(x, weight, qtype, state_size, output_size):
 | 
			
		||||
    # return ???
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@torch.library.register_fake("ipex_llm::batch_forward")
 | 
			
		||||
def _(x, weight, qtype):
 | 
			
		||||
    return torch.empty_like(x)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@torch.library.register_fake("ipex_llm::sdp")
 | 
			
		||||
def _(query, key, value, mask):
 | 
			
		||||
    return torch.empty(query.shape, dtype=query.dtype, device=query.device)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@torch.library.register_fake("ipex_llm::sdp_fp8")
 | 
			
		||||
def _(query, key, value, mask):
 | 
			
		||||
    return torch.empty(query.shape, dtype=query.dtype, device=query.device)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@torch.library.register_fake("ipex_llm::sdp_causal")
 | 
			
		||||
def _(query, key, value, mask, scale):
 | 
			
		||||
    return torch.empty(query.shape, dtype=query.dtype, device=query.device)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@torch.library.register_fake("ipex_llm::sdp_fp8_causal")
 | 
			
		||||
def _(query, key, value, mask, scale):
 | 
			
		||||
    return torch.empty(query.shape, dtype=query.dtype, device=query.device)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@torch.library.register_fake("ipex_llm::sdp_non_causal")
 | 
			
		||||
def _(query, key, value, mask, scale):
 | 
			
		||||
    return torch.empty(query.shape, dtype=query.dtype, device=query.device)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@torch.library.register_fake("ipex_llm::sdp_fp8_non_causal")
 | 
			
		||||
def _(query, key, value, mask, scale):
 | 
			
		||||
    return torch.empty(query.shape, dtype=query.dtype, device=query.device)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@torch.library.register_fake("ipex_llm::siglip_sdp_non_causal")
 | 
			
		||||
def _(query, key, value, mask):
 | 
			
		||||
    return torch.empty(query.shape, dtype=query.dtype, device=query.device)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@torch.library.register_fake("ipex_llm::gemma2_sdp")
 | 
			
		||||
def _(query, key, value, mask, f1, f2):
 | 
			
		||||
    return torch.empty(query.shape, dtype=query.dtype, device=query.device)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@torch.library.register_fake("ipex_llm::gemma2_sdp_causal")
 | 
			
		||||
def _(query, key, value, mask, f1, f2):
 | 
			
		||||
    return torch.empty(query.shape, dtype=query.dtype, device=query.device)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@torch.library.register_fake("ipex_llm::rms_norm")
 | 
			
		||||
def _(weight, x, eps):
 | 
			
		||||
    return torch.empty_like(x)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@torch.library.register_fake("ipex_llm::layer_norm")
 | 
			
		||||
def _(x, weight, bias, eps):
 | 
			
		||||
    return torch.empty_like(x)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@torch.library.register_fake("ipex_llm::rotary_half_inplaced")
 | 
			
		||||
def _(inv_freq, position_ids, query, key):
 | 
			
		||||
    pass
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@torch.library.register_fake("ipex_llm::rotary_two_inplaced")
 | 
			
		||||
def _(inv_freq, position_ids, query, key):
 | 
			
		||||
    pass
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@torch.library.register_fake("ipex_llm::rotary_half_with_cache_inplaced")
 | 
			
		||||
def _(query, key, cos, sin):
 | 
			
		||||
    pass
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@torch.library.register_fake("ipex_llm::rotary_two_with_cache_inplaced")
 | 
			
		||||
def _(query, key, cos, sin, half_layout):
 | 
			
		||||
    pass
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@torch.library.register_fake("ipex_llm::mlp_silu_mul_inplaced")
 | 
			
		||||
def _(gate, up):
 | 
			
		||||
    pass
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@torch.library.register_fake("ipex_llm::quantize_key_value")
 | 
			
		||||
def _(key, value, key_output, value_output):
 | 
			
		||||
    pass
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@torch.library.register_fake("ipex_llm::dequantize_key_value")
 | 
			
		||||
def _(key, value, key_output, value_output):
 | 
			
		||||
    pass
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@torch.library.register_fake("ipex_llm::attn_softmax_inplaced")
 | 
			
		||||
def _(attn):
 | 
			
		||||
    pass
 | 
			
		||||
		Loading…
	
		Reference in a new issue