Add guide for save-load usage (#12498)
This commit is contained in:
parent
6711a48a36
commit
0b377100c5
2 changed files with 174 additions and 0 deletions
|
|
@ -0,0 +1,70 @@
|
|||
# Save/Load Low-Bit Models with IPEX-LLM Optimizations
|
||||
|
||||
In this directory, you will find example on how you could save/load models with IPEX-LLM optimizations on Intel NPU.
|
||||
|
||||
## Example: Save/Load Optimized Models
|
||||
In the example [generate.py](./generate.py), we show a basic use case of saving/loading model in low-bit optimizations to predict the next N tokens using `generate()` API.
|
||||
|
||||
## 0. Prerequisites
|
||||
For `ipex-llm` NPU support, please refer to [Quick Start](../../../../../../../docs/mddocs/Quickstart/npu_quickstart.md#install-prerequisites) for details about the required preparations.
|
||||
|
||||
## 1. Install & Runtime Configurations
|
||||
### 1.1 Installation on Windows
|
||||
We suggest using conda to manage environment:
|
||||
```cmd
|
||||
conda create -n llm python=3.11
|
||||
conda activate llm
|
||||
|
||||
:: install ipex-llm with 'npu' option
|
||||
pip install --pre --upgrade ipex-llm[npu]
|
||||
|
||||
:: [optional] for Llama-3.2-1B-Instruct & Llama-3.2-3B-Instruct
|
||||
pip install transformers==4.45.0 accelerate==0.33.0
|
||||
```
|
||||
Please refer to [Quick Start](../../../../../../../docs/mddocs/Quickstart/npu_quickstart.md#install-prerequisites) for more details about `ipex-llm` installation on Intel NPU.
|
||||
|
||||
### 1.2 Runtime Configurations
|
||||
Please refer to [Quick Start](../../../../../../../docs/mddocs/Quickstart/npu_quickstart.md#runtime-configurations) for environment variables setting based on your device.
|
||||
|
||||
## 3. Running examples
|
||||
|
||||
If you want to save the optimized model, run:
|
||||
```
|
||||
python ./generate.py --repo-id-or-model-path "meta-llama/Llama-2-7b-chat-hf" --save-directory path/to/save/model
|
||||
```
|
||||
|
||||
If you want to load the optimized low-bit model, run:
|
||||
```
|
||||
python ./generate.py --load-directory path/to/load/model
|
||||
```
|
||||
|
||||
In the example, several arguments can be passed to satisfy your requirements:
|
||||
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama2 model to be downloaded, or the path to the ModelScope checkpoint folder. It is default to be `'meta-llama/Llama-2-7b-chat-hf'`.
|
||||
- `--save-directory`: argument defining the path to save the low-bit model. Then you can load the low-bit directly.
|
||||
- `--load-directory`: argument defining the path to load low-bit model.
|
||||
- `--prompt PROMPT`: argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to be `'What is AI?'`.
|
||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||
- `--max-context-len MAX_CONTEXT_LEN`: Defines the maximum sequence length for both input and output tokens. It is default to be `1024`.
|
||||
- `--max-prompt-len MAX_PROMPT_LEN`: Defines the maximum number of tokens that the input prompt can contain. It is default to be `512`.
|
||||
|
||||
### Sample Output
|
||||
#### [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
|
||||
```log
|
||||
Inference time: xxxx s
|
||||
-------------------- Input --------------------
|
||||
<s><s> [INST] <<SYS>>
|
||||
|
||||
<</SYS>>
|
||||
|
||||
What is AI? [/INST]
|
||||
|
||||
-------------------- Output --------------------
|
||||
<s><s> [INST] <<SYS>>
|
||||
|
||||
<</SYS>>
|
||||
|
||||
What is AI? [/INST]
|
||||
|
||||
Artificial Intelligence (AI) is a field of computer science and technology that focuses on the development of intelligent machines that can perform tasks that
|
||||
```
|
||||
|
|
@ -0,0 +1,104 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import torch
|
||||
import time
|
||||
import argparse
|
||||
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer
|
||||
from ipex_llm.utils.common.log4Error import invalidInputError
|
||||
|
||||
|
||||
# you could tune the prompt based on your own model,
|
||||
LLAMA2_PROMPT_FORMAT = """<s> [INST] <<SYS>>
|
||||
|
||||
<</SYS>>
|
||||
|
||||
{prompt} [/INST]
|
||||
"""
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Example of saving and loading the optimized model')
|
||||
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
|
||||
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
|
||||
', or the path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--save-directory', type=str, default=None,
|
||||
help='The path to save the low-bit model.')
|
||||
parser.add_argument('--load-directory', type=str, default=None,
|
||||
help='The path to load the low-bit model.')
|
||||
parser.add_argument('--prompt', type=str, default="What is AI?",
|
||||
help='Prompt to infer')
|
||||
parser.add_argument('--n-predict', type=int, default=32,
|
||||
help='Max tokens to predict')
|
||||
parser.add_argument("--max-context-len", type=int, default=1024)
|
||||
parser.add_argument("--max-prompt-len", type=int, default=512)
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
save_directory = args.save_directory
|
||||
load_directory = args.load_directory
|
||||
|
||||
if save_directory:
|
||||
# first time to load and save
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_path,
|
||||
torch_dtype=torch.float16,
|
||||
trust_remote_code=True,
|
||||
attn_implementation="eager",
|
||||
load_in_low_bit="sym_int4",
|
||||
optimize_model=True,
|
||||
max_context_len=args.max_context_len,
|
||||
max_prompt_len=args.max_prompt_len,
|
||||
save_directory=save_directory
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
tokenizer.save_pretrained(save_directory)
|
||||
print(f"Finish to load model from {model_path} and save to {save_directory}")
|
||||
elif load_directory:
|
||||
# load low-bit model
|
||||
model = AutoModelForCausalLM.load_low_bit(
|
||||
load_directory,
|
||||
attn_implementation="eager",
|
||||
torch_dtype=torch.float16,
|
||||
optimize_model=True,
|
||||
max_context_len=args.max_context_len,
|
||||
max_prompt_len=args.max_prompt_len
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(load_directory, trust_remote_code=True)
|
||||
print(f"Finish to load model from {load_directory}")
|
||||
else:
|
||||
invalidInputError(False,
|
||||
"Both `--save-directory` and `--load-directory` are None, please provide one of this.")
|
||||
|
||||
# Generate predicted tokens
|
||||
with torch.inference_mode():
|
||||
for i in range(3):
|
||||
prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt)
|
||||
_input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
||||
|
||||
st = time.time()
|
||||
output = model.generate(
|
||||
_input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict
|
||||
)
|
||||
end = time.time()
|
||||
|
||||
print(f"Inference time: {end-st} s")
|
||||
input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
|
||||
print("-" * 20, "Input", "-" * 20)
|
||||
print(input_str)
|
||||
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
|
||||
print("-" * 20, "Output", "-" * 20)
|
||||
print(output_str)
|
||||
Loading…
Reference in a new issue