Add guide for save-load usage (#12498)
This commit is contained in:
		
							parent
							
								
									6711a48a36
								
							
						
					
					
						commit
						0b377100c5
					
				
					 2 changed files with 174 additions and 0 deletions
				
			
		| 
						 | 
				
			
			@ -0,0 +1,70 @@
 | 
			
		|||
# Save/Load Low-Bit Models with IPEX-LLM Optimizations
 | 
			
		||||
 | 
			
		||||
In this directory, you will find example on how you could save/load models with IPEX-LLM optimizations on Intel NPU.
 | 
			
		||||
 | 
			
		||||
## Example: Save/Load Optimized Models
 | 
			
		||||
In the example [generate.py](./generate.py), we show a basic use case of saving/loading model in low-bit optimizations to predict the next N tokens using `generate()` API.
 | 
			
		||||
 | 
			
		||||
## 0. Prerequisites
 | 
			
		||||
For `ipex-llm` NPU support, please refer to [Quick Start](../../../../../../../docs/mddocs/Quickstart/npu_quickstart.md#install-prerequisites) for details about the required preparations.
 | 
			
		||||
 | 
			
		||||
## 1. Install & Runtime Configurations
 | 
			
		||||
### 1.1 Installation on Windows
 | 
			
		||||
We suggest using conda to manage environment:
 | 
			
		||||
```cmd
 | 
			
		||||
conda create -n llm python=3.11
 | 
			
		||||
conda activate llm
 | 
			
		||||
 | 
			
		||||
:: install ipex-llm with 'npu' option
 | 
			
		||||
pip install --pre --upgrade ipex-llm[npu]
 | 
			
		||||
 | 
			
		||||
:: [optional] for Llama-3.2-1B-Instruct & Llama-3.2-3B-Instruct
 | 
			
		||||
pip install transformers==4.45.0 accelerate==0.33.0
 | 
			
		||||
```
 | 
			
		||||
Please refer to [Quick Start](../../../../../../../docs/mddocs/Quickstart/npu_quickstart.md#install-prerequisites) for more details about `ipex-llm` installation on Intel NPU.
 | 
			
		||||
 | 
			
		||||
### 1.2 Runtime Configurations
 | 
			
		||||
Please refer to [Quick Start](../../../../../../../docs/mddocs/Quickstart/npu_quickstart.md#runtime-configurations) for environment variables setting based on your device.
 | 
			
		||||
 | 
			
		||||
## 3. Running examples
 | 
			
		||||
 | 
			
		||||
If you want to save the optimized model, run:
 | 
			
		||||
```
 | 
			
		||||
python ./generate.py --repo-id-or-model-path "meta-llama/Llama-2-7b-chat-hf" --save-directory path/to/save/model
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
If you want to load the optimized low-bit model, run:
 | 
			
		||||
```
 | 
			
		||||
python ./generate.py --load-directory path/to/load/model
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
In the example, several arguments can be passed to satisfy your requirements:
 | 
			
		||||
 | 
			
		||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama2 model to be downloaded, or the path to the ModelScope checkpoint folder. It is default to be `'meta-llama/Llama-2-7b-chat-hf'`.
 | 
			
		||||
- `--save-directory`: argument defining the path to save the low-bit model. Then you can load the low-bit directly.
 | 
			
		||||
- `--load-directory`: argument defining the path to load low-bit model.
 | 
			
		||||
- `--prompt PROMPT`: argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to be `'What is AI?'`.
 | 
			
		||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
			
		||||
- `--max-context-len MAX_CONTEXT_LEN`: Defines the maximum sequence length for both input and output tokens. It is default to be `1024`.
 | 
			
		||||
- `--max-prompt-len MAX_PROMPT_LEN`: Defines the maximum number of tokens that the input prompt can contain. It is default to be `512`.
 | 
			
		||||
 | 
			
		||||
### Sample Output
 | 
			
		||||
#### [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
 | 
			
		||||
```log
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
-------------------- Input --------------------
 | 
			
		||||
<s><s>  [INST] <<SYS>>
 | 
			
		||||
 | 
			
		||||
<</SYS>>
 | 
			
		||||
 | 
			
		||||
What is AI? [/INST]
 | 
			
		||||
 | 
			
		||||
-------------------- Output --------------------
 | 
			
		||||
<s><s>  [INST] <<SYS>>
 | 
			
		||||
 | 
			
		||||
<</SYS>>
 | 
			
		||||
 | 
			
		||||
What is AI? [/INST]
 | 
			
		||||
 | 
			
		||||
Artificial Intelligence (AI) is a field of computer science and technology that focuses on the development of intelligent machines that can perform tasks that
 | 
			
		||||
```
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,104 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import time
 | 
			
		||||
import argparse
 | 
			
		||||
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
 | 
			
		||||
from transformers import AutoTokenizer
 | 
			
		||||
from ipex_llm.utils.common.log4Error import invalidInputError
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# you could tune the prompt based on your own model,
 | 
			
		||||
LLAMA2_PROMPT_FORMAT = """<s> [INST] <<SYS>>
 | 
			
		||||
 | 
			
		||||
<</SYS>>
 | 
			
		||||
 | 
			
		||||
{prompt} [/INST]
 | 
			
		||||
"""
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    parser = argparse.ArgumentParser(description='Example of saving and loading the optimized model')
 | 
			
		||||
    parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
 | 
			
		||||
                        help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
 | 
			
		||||
                             ', or the path to the huggingface checkpoint folder')
 | 
			
		||||
    parser.add_argument('--save-directory', type=str, default=None,
 | 
			
		||||
                        help='The path to save the low-bit model.')
 | 
			
		||||
    parser.add_argument('--load-directory', type=str, default=None,
 | 
			
		||||
                        help='The path to load the low-bit model.')
 | 
			
		||||
    parser.add_argument('--prompt', type=str, default="What is AI?",
 | 
			
		||||
                        help='Prompt to infer')
 | 
			
		||||
    parser.add_argument('--n-predict', type=int, default=32,
 | 
			
		||||
                        help='Max tokens to predict')
 | 
			
		||||
    parser.add_argument("--max-context-len", type=int, default=1024)
 | 
			
		||||
    parser.add_argument("--max-prompt-len", type=int, default=512)
 | 
			
		||||
    
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path
 | 
			
		||||
    save_directory = args.save_directory
 | 
			
		||||
    load_directory = args.load_directory
 | 
			
		||||
 | 
			
		||||
    if save_directory:
 | 
			
		||||
        # first time to load and save
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(
 | 
			
		||||
            model_path,
 | 
			
		||||
            torch_dtype=torch.float16,
 | 
			
		||||
            trust_remote_code=True,
 | 
			
		||||
            attn_implementation="eager",
 | 
			
		||||
            load_in_low_bit="sym_int4",
 | 
			
		||||
            optimize_model=True,
 | 
			
		||||
            max_context_len=args.max_context_len,
 | 
			
		||||
            max_prompt_len=args.max_prompt_len,
 | 
			
		||||
            save_directory=save_directory
 | 
			
		||||
        )
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
        tokenizer.save_pretrained(save_directory)
 | 
			
		||||
        print(f"Finish to load model from {model_path} and save to {save_directory}")
 | 
			
		||||
    elif load_directory:
 | 
			
		||||
        # load low-bit model
 | 
			
		||||
        model = AutoModelForCausalLM.load_low_bit(
 | 
			
		||||
            load_directory,
 | 
			
		||||
            attn_implementation="eager",
 | 
			
		||||
            torch_dtype=torch.float16,
 | 
			
		||||
            optimize_model=True,
 | 
			
		||||
            max_context_len=args.max_context_len,
 | 
			
		||||
            max_prompt_len=args.max_prompt_len
 | 
			
		||||
        )
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(load_directory, trust_remote_code=True)
 | 
			
		||||
        print(f"Finish to load model from {load_directory}")
 | 
			
		||||
    else:
 | 
			
		||||
        invalidInputError(False,
 | 
			
		||||
                          "Both `--save-directory` and `--load-directory` are None, please provide one of this.")
 | 
			
		||||
 | 
			
		||||
    # Generate predicted tokens
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        for i in range(3):
 | 
			
		||||
            prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
			
		||||
            _input_ids = tokenizer.encode(prompt, return_tensors="pt")
 | 
			
		||||
 | 
			
		||||
            st = time.time()
 | 
			
		||||
            output = model.generate(
 | 
			
		||||
                _input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict
 | 
			
		||||
            )
 | 
			
		||||
            end = time.time()
 | 
			
		||||
 | 
			
		||||
            print(f"Inference time: {end-st} s")
 | 
			
		||||
            input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
 | 
			
		||||
            print("-" * 20, "Input", "-" * 20)
 | 
			
		||||
            print(input_str)
 | 
			
		||||
            output_str = tokenizer.decode(output[0], skip_special_tokens=False)
 | 
			
		||||
            print("-" * 20, "Output", "-" * 20)
 | 
			
		||||
            print(output_str)
 | 
			
		||||
		Loading…
	
		Reference in a new issue