Refactor fastapi-serving and add one card serving(#11581)
* init fastapi-serving one card * mv api code to source * update worker * update for style-check * add worker * update bash * update * update worker name and add readme * rename update * rename to fastapi
This commit is contained in:
parent
373ccbbb0c
commit
9c15abf825
19 changed files with 583 additions and 367 deletions
|
|
@ -61,7 +61,7 @@ RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRO
|
|||
cp -r ./ipex-llm/python/llm/example/GPU/vLLM-Serving/ ./vLLM-Serving && \
|
||||
# Download pp_serving
|
||||
mkdir -p /llm/pp_serving && \
|
||||
cp ./ipex-llm/python/llm/example/GPU/Pipeline-Parallel-FastAPI/*.py /llm/pp_serving/ && \
|
||||
cp ./ipex-llm/python/llm/example/GPU/Pipeline-Parallel-Serving/*.py /llm/pp_serving/ && \
|
||||
# Install related library of benchmarking
|
||||
pip install pandas omegaconf && \
|
||||
chmod +x /llm/benchmark.sh && \
|
||||
|
|
|
|||
|
|
@ -1,346 +0,0 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import torch.nn.parallel
|
||||
import torch.distributed as dist
|
||||
import os
|
||||
|
||||
from ipex_llm.utils.common import invalidInputError
|
||||
from ipex_llm.transformers import init_pipeline_parallel, ModelRunner
|
||||
import oneccl_bindings_for_pytorch
|
||||
import json
|
||||
|
||||
from transformers.utils import logging
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
init_pipeline_parallel()
|
||||
|
||||
my_rank = dist.get_rank()
|
||||
my_size = dist.get_world_size()
|
||||
device = f"xpu:{my_rank}"
|
||||
logger.info(f"rank: {my_rank}, size: {my_size}")
|
||||
|
||||
import time
|
||||
from transformers import AutoTokenizer
|
||||
from fastapi import FastAPI, HTTPException, Request
|
||||
from fastapi.responses import StreamingResponse
|
||||
from pydantic import BaseModel
|
||||
import uvicorn
|
||||
import asyncio, uuid
|
||||
from typing import Dict, List, Optional, Any, Callable, Union
|
||||
import argparse
|
||||
|
||||
|
||||
class PromptRequest(BaseModel):
|
||||
prompt: str
|
||||
n_predict: Optional[int] = 256
|
||||
req_type: str = 'completion'
|
||||
|
||||
from openai.types.chat import ChatCompletionMessageParam
|
||||
class ChatCompletionRequest(BaseModel):
|
||||
messages: List[ChatCompletionMessageParam]
|
||||
model: str
|
||||
max_tokens: Optional[int] = None
|
||||
stream: Optional[bool] = False
|
||||
|
||||
|
||||
class CompletionRequest(BaseModel):
|
||||
model: str
|
||||
prompt: Union[List[int], List[List[int]], str, List[str]]
|
||||
max_tokens: Optional[int] = None
|
||||
stream: Optional[bool] = False
|
||||
|
||||
empty_req = PromptRequest(prompt="", n_predict=0)
|
||||
|
||||
app = FastAPI()
|
||||
global tokenizer
|
||||
global local_model
|
||||
|
||||
request_queue: asyncio.Queue = asyncio.Queue()
|
||||
result_dict: Dict[str, str] = {}
|
||||
streamer_dict = {}
|
||||
local_rank = my_rank
|
||||
|
||||
|
||||
from openai_protocol import (
|
||||
ChatCompletionResponseStreamChoice,
|
||||
ChatCompletionStreamResponse,
|
||||
ChatCompletionResponseChoice,
|
||||
ChatCompletionResponse,
|
||||
ChatMessage,
|
||||
DeltaMessage,
|
||||
CompletionResponseChoice,
|
||||
CompletionResponse,
|
||||
CompletionResponseStreamChoice,
|
||||
CompletionStreamResponse,
|
||||
)
|
||||
|
||||
|
||||
async def chat_stream_generator(local_model, delta_text_queue, request_id):
|
||||
model_name = local_model.model_name
|
||||
index = 0
|
||||
while True:
|
||||
if not delta_text_queue.empty():
|
||||
with local_model.dict_lock:
|
||||
remain, delta_text = await delta_text_queue.get()
|
||||
# print(remain)
|
||||
choice_data = ChatCompletionResponseStreamChoice(
|
||||
index=index,
|
||||
delta=DeltaMessage(role="assistant", content=delta_text),
|
||||
logprobs=None,
|
||||
finish_reason=None)
|
||||
chunk = ChatCompletionStreamResponse(
|
||||
id=request_id,
|
||||
choices=[choice_data],
|
||||
model=model_name)
|
||||
data = chunk.model_dump_json(exclude_unset=True)
|
||||
yield f"data: {data}\n\n"
|
||||
index = index + 1
|
||||
if remain == 0:
|
||||
choice_data = ChatCompletionResponseStreamChoice(
|
||||
index=index,
|
||||
delta=DeltaMessage(role="assistant", content=None),
|
||||
logprobs=None,
|
||||
finish_reason="length")
|
||||
chunk = ChatCompletionStreamResponse(
|
||||
id=request_id,
|
||||
choices=[choice_data],
|
||||
model=model_name)
|
||||
data = chunk.model_dump_json(exclude_unset=True)
|
||||
yield f"data: {data}\n\n"
|
||||
break
|
||||
else:
|
||||
await asyncio.sleep(0)
|
||||
local_model.streamer.pop(request_id, None)
|
||||
|
||||
|
||||
async def completion_stream_generator(local_model, delta_text_queue, request_id):
|
||||
model_name = local_model.model_name
|
||||
index = 0
|
||||
while True:
|
||||
if not delta_text_queue.empty():
|
||||
with local_model.dict_lock:
|
||||
remain, delta_text = await delta_text_queue.get()
|
||||
# print(remain)
|
||||
choice_data = CompletionResponseStreamChoice(
|
||||
index=index,
|
||||
text=delta_text,
|
||||
logprobs=None,
|
||||
finish_reason=None)
|
||||
chunk = CompletionStreamResponse(
|
||||
id=request_id,
|
||||
choices=[choice_data],
|
||||
model=model_name)
|
||||
data = chunk.model_dump_json(exclude_unset=True)
|
||||
yield f"data: {data}\n\n"
|
||||
index = index + 1
|
||||
if remain == 0:
|
||||
choice_data = CompletionResponseStreamChoice(
|
||||
index=index,
|
||||
text="",
|
||||
logprobs=None,
|
||||
finish_reason="length")
|
||||
chunk = CompletionStreamResponse(
|
||||
id=request_id,
|
||||
choices=[choice_data],
|
||||
model=model_name)
|
||||
data = chunk.model_dump_json(exclude_unset=True)
|
||||
yield f"data: {data}\n\n"
|
||||
break
|
||||
else:
|
||||
await asyncio.sleep(0)
|
||||
local_model.streamer.pop(request_id, None)
|
||||
|
||||
|
||||
async def generator(local_model, delta_text_queue, request_id):
|
||||
while True:
|
||||
if not delta_text_queue.empty():
|
||||
with local_model.dict_lock:
|
||||
remain, delta_text = await delta_text_queue.get()
|
||||
yield delta_text
|
||||
if remain == 0:
|
||||
break
|
||||
else:
|
||||
await asyncio.sleep(0)
|
||||
local_model.streamer.pop(request_id, None)
|
||||
|
||||
|
||||
@app.post("/generate/")
|
||||
async def generate(prompt_request: PromptRequest):
|
||||
request_id = str(uuid.uuid4())
|
||||
await local_model.waiting_requests.put((request_id, prompt_request))
|
||||
while True:
|
||||
await asyncio.sleep(0)
|
||||
cur_streamer = local_model.streamer.get(request_id, None)
|
||||
if cur_streamer is not None:
|
||||
output_str = []
|
||||
async for item in generator(local_model, cur_streamer, request_id):
|
||||
output_str.append(item)
|
||||
return request_id, "".join(output_str)
|
||||
|
||||
|
||||
async def generate_stream(prompt_request: PromptRequest):
|
||||
request_id = str(uuid.uuid4()) + "stream"
|
||||
await local_model.waiting_requests.put((request_id, prompt_request))
|
||||
while True:
|
||||
await asyncio.sleep(0)
|
||||
cur_streamer = local_model.streamer.get(request_id, None)
|
||||
if cur_streamer is not None:
|
||||
if prompt_request.req_type == 'completion':
|
||||
cur_generator = completion_stream_generator(local_model, cur_streamer, request_id)
|
||||
elif prompt_request.req_type == 'chat':
|
||||
cur_generator = chat_stream_generator(local_model, cur_streamer, request_id)
|
||||
else:
|
||||
invalidInputError(False, "Invalid Request Type.")
|
||||
|
||||
return request_id, StreamingResponse(
|
||||
content=cur_generator, media_type="text/event-stream"
|
||||
)
|
||||
|
||||
@app.post("/generate_stream/")
|
||||
async def generate_stream_api(prompt_request: PromptRequest):
|
||||
request_id, result = await generate_stream(prompt_request)
|
||||
return result
|
||||
|
||||
|
||||
DEFAULT_SYSTEM_PROMPT = """\
|
||||
"""
|
||||
|
||||
def get_prompt(messages) -> str:
|
||||
prompt = ""
|
||||
for msg in messages:
|
||||
role = msg["role"]
|
||||
content = msg["content"]
|
||||
if role == "system":
|
||||
prompt += f"<<SYS>>\n{content}\n<</SYS>>\n\n"
|
||||
elif role == "user":
|
||||
prompt += f"[INST] {content} [/INST] "
|
||||
elif role == "assistant":
|
||||
prompt += f"{content} "
|
||||
else:
|
||||
raise ValueError(f"Unknown role: {role}")
|
||||
return prompt.strip()
|
||||
|
||||
@app.post("/v1/chat/completions")
|
||||
async def create_chat_completion(request: ChatCompletionRequest):
|
||||
model_name = local_model.model_name
|
||||
if request.max_tokens is None:
|
||||
n_predict = 256
|
||||
else:
|
||||
n_predict = request.max_tokens
|
||||
prompt_request = PromptRequest(
|
||||
prompt=get_prompt(request.messages),
|
||||
n_predict=n_predict,
|
||||
req_type="chat"
|
||||
)
|
||||
if request.stream:
|
||||
request_id, result = await generate_stream(prompt_request)
|
||||
else:
|
||||
request_id, result = await generate(prompt_request)
|
||||
choice_data = ChatCompletionResponseChoice(
|
||||
index=0,
|
||||
message=ChatMessage(role="assistant", content=result),
|
||||
logprobs=None,
|
||||
finish_reason="length")
|
||||
result = ChatCompletionResponse(
|
||||
id=request_id,
|
||||
choices=[choice_data],
|
||||
model=model_name)
|
||||
return result
|
||||
|
||||
@app.post("/v1/completions")
|
||||
async def create_completion(request: CompletionRequest):
|
||||
model_name = local_model.model_name
|
||||
if request.max_tokens is None:
|
||||
n_predict = 256
|
||||
else:
|
||||
n_predict = request.max_tokens
|
||||
prompt_request = PromptRequest(
|
||||
prompt=request.prompt,
|
||||
n_predict=n_predict,
|
||||
req_type="completion"
|
||||
)
|
||||
if request.stream:
|
||||
request_id, result = await generate_stream(prompt_request)
|
||||
else:
|
||||
request_id, result = await generate(prompt_request)
|
||||
choice_data = CompletionResponseChoice(
|
||||
index=0,
|
||||
text=result,
|
||||
logprobs=None,
|
||||
finish_reason="length")
|
||||
result = CompletionResponse(
|
||||
id=request_id,
|
||||
choices=[choice_data],
|
||||
model=model_name)
|
||||
return result
|
||||
|
||||
|
||||
async def process_requests(local_model, result_dict):
|
||||
while True:
|
||||
await asyncio.sleep(0)
|
||||
await local_model.process_step(tokenizer, result_dict)
|
||||
|
||||
|
||||
@app.on_event("startup")
|
||||
async def startup_event():
|
||||
asyncio.create_task(process_requests(local_model, result_dict))
|
||||
|
||||
async def main():
|
||||
parser = argparse.ArgumentParser(description='Predict Tokens using fastapi by leveraging DeepSpeed-AutoTP')
|
||||
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
|
||||
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf`, `meta-llama/Llama-2-13b-chat-hf` and `meta-llama/Llama-2-70b-chat-hf`) to be downloaded'
|
||||
', or the path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--low-bit', type=str, default='sym_int4',
|
||||
help='The quantization type the model will convert to.')
|
||||
parser.add_argument('--port', type=int, default=8000,
|
||||
help='The port number on which the server will run.')
|
||||
parser.add_argument('--max-num-seqs', type=int, default=8,
|
||||
help='Max num sequences in a batch.')
|
||||
parser.add_argument('--max-prefilled-seqs', type=int, default=0,
|
||||
help='Max num sequences in a batch during prefilling.')
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
low_bit = args.low_bit
|
||||
max_num_seqs = args.max_num_seqs
|
||||
max_prefilled_seqs = args.max_prefilled_seqs
|
||||
|
||||
# serialize model initialization so that we do not run out of CPU memory
|
||||
for i in range(my_size):
|
||||
if my_rank == i:
|
||||
logger.info("start model initialization")
|
||||
global local_model
|
||||
local_model = ModelRunner(model_path, my_rank, my_size, low_bit, max_num_seqs, max_prefilled_seqs)
|
||||
logger.info("model initialized")
|
||||
dist.barrier()
|
||||
# Load tokenizer
|
||||
global tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, padding_side='left')
|
||||
if tokenizer.pad_token is None:
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
|
||||
if local_rank == 0:
|
||||
config = uvicorn.Config(app=app, host="0.0.0.0", port=args.port)
|
||||
server = uvicorn.Server(config)
|
||||
await server.serve()
|
||||
else:
|
||||
while True:
|
||||
await asyncio.sleep(0)
|
||||
await local_model.process_step(tokenizer, result_dict)
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
|
|
@ -50,7 +50,14 @@ pip install transformers==4.40.0
|
|||
pip install trl==0.8.1
|
||||
```
|
||||
|
||||
### 2. Run pipeline parallel serving on multiple GPUs
|
||||
### 2-1. Run ipex-llm serving on one GPU card
|
||||
|
||||
```bash
|
||||
# Need to set NUM_GPUS=1 and MODEL_PATH in run.sh first
|
||||
bash run.sh
|
||||
```
|
||||
|
||||
### 2-2. Run pipeline parallel serving on multiple GPUs
|
||||
|
||||
```bash
|
||||
# Need to set MODEL_PATH in run.sh first
|
||||
|
|
@ -76,7 +83,7 @@ export http_proxy=
|
|||
export https_proxy=
|
||||
|
||||
curl -X 'POST' \
|
||||
'http://127.0.0.1:8000/generate/' \
|
||||
'http://127.0.0.1:8000/generate' \
|
||||
-H 'accept: application/json' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-d '{
|
||||
|
|
@ -99,7 +106,7 @@ Please change the test url accordingly.
|
|||
|
||||
```bash
|
||||
# set t/c to the number of concurrencies to test full throughput.
|
||||
wrk -t1 -c1 -d5m -s ./wrk_script_1024.lua http://127.0.0.1:8000/generate/ --timeout 1m
|
||||
wrk -t1 -c1 -d5m -s ./wrk_script_1024.lua http://127.0.0.1:8000/generate --timeout 1m
|
||||
```
|
||||
|
||||
## 5. Using the `benchmark.py` Script
|
||||
|
|
@ -0,0 +1,78 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import torch.distributed as dist
|
||||
from ipex_llm.transformers import init_pipeline_parallel, PPModelWorker
|
||||
from ipex_llm.serving.fastapi import FastApp
|
||||
from transformers.utils import logging
|
||||
from transformers import AutoTokenizer
|
||||
import uvicorn
|
||||
import asyncio
|
||||
from typing import Dict
|
||||
import argparse
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
init_pipeline_parallel()
|
||||
my_rank = dist.get_rank()
|
||||
my_size = dist.get_world_size()
|
||||
device = f"xpu:{my_rank}"
|
||||
logger.info(f"rank: {my_rank}, size: {my_size}")
|
||||
result_dict: Dict[str, str] = {}
|
||||
local_rank = my_rank
|
||||
|
||||
async def main():
|
||||
parser = argparse.ArgumentParser(description='Predict Tokens using fastapi by leveraging Pipeline-Parallel')
|
||||
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
|
||||
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf`, `meta-llama/Llama-2-13b-chat-hf` and `meta-llama/Llama-2-70b-chat-hf`) to be downloaded'
|
||||
', or the path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--low-bit', type=str, default='sym_int4',
|
||||
help='The quantization type the model will convert to.')
|
||||
parser.add_argument('--port', type=int, default=8000,
|
||||
help='The port number on which the server will run.')
|
||||
parser.add_argument('--max-num-seqs', type=int, default=8,
|
||||
help='Max num sequences in a batch.')
|
||||
parser.add_argument('--max-prefilled-seqs', type=int, default=0,
|
||||
help='Max num sequences in a batch during prefilling.')
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
low_bit = args.low_bit
|
||||
max_num_seqs = args.max_num_seqs
|
||||
max_prefilled_seqs = args.max_prefilled_seqs
|
||||
|
||||
# serialize model initialization so that we do not run out of CPU memory
|
||||
for i in range(my_size):
|
||||
if my_rank == i:
|
||||
logger.info("start model initialization")
|
||||
local_model = PPModelWorker(model_path, my_rank, my_size, low_bit, max_num_seqs, max_prefilled_seqs)
|
||||
logger.info("model initialized")
|
||||
dist.barrier()
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, padding_side='left')
|
||||
if tokenizer.pad_token is None:
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
|
||||
myapp = FastApp(local_model, tokenizer)
|
||||
if local_rank == 0:
|
||||
config = uvicorn.Config(app=myapp.app, host="0.0.0.0", port=args.port)
|
||||
server = uvicorn.Server(config)
|
||||
await server.serve()
|
||||
else:
|
||||
while True:
|
||||
await asyncio.sleep(0)
|
||||
await local_model.process_step(tokenizer, result_dict)
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
|
|
@ -40,4 +40,9 @@ export LOW_BIT="fp8"
|
|||
export MAX_NUM_SEQS="4"
|
||||
export MAX_PREFILLED_SEQS=0
|
||||
|
||||
if [[ $NUM_GPUS -eq 1 ]]; then
|
||||
export ZE_AFFINITY_MASK=0
|
||||
python serving.py --repo-id-or-model-path $MODEL_PATH --low-bit $LOW_BIT
|
||||
else
|
||||
CCL_ZE_IPC_EXCHANGE=sockets torchrun --standalone --nnodes=1 --nproc-per-node $NUM_GPUS pipeline_serving.py --repo-id-or-model-path $MODEL_PATH --low-bit $LOW_BIT --max-num-seqs $MAX_NUM_SEQS --max-prefilled-seqs $MAX_PREFILLED_SEQS
|
||||
fi
|
||||
53
python/llm/example/GPU/Pipeline-Parallel-Serving/serving.py
Normal file
53
python/llm/example/GPU/Pipeline-Parallel-Serving/serving.py
Normal file
|
|
@ -0,0 +1,53 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import torch
|
||||
from transformers.utils import logging
|
||||
import time
|
||||
from transformers import AutoTokenizer
|
||||
import uvicorn
|
||||
import asyncio
|
||||
import argparse
|
||||
from ipex_llm.serving.fastapi import FastApp
|
||||
from ipex_llm.serving.fastapi import ModelWorker
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
async def main():
|
||||
parser = argparse.ArgumentParser(description='Predict Tokens using fastapi by leveraging ipex-llm')
|
||||
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
|
||||
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf`, `meta-llama/Llama-2-13b-chat-hf` and `meta-llama/Llama-2-70b-chat-hf`) to be downloaded'
|
||||
', or the path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--low-bit', type=str, default='sym_int4',
|
||||
help='The quantization type the model will convert to.')
|
||||
parser.add_argument('--port', type=int, default=8000,
|
||||
help='The port number on which the server will run.')
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
low_bit = args.low_bit
|
||||
|
||||
local_model = ModelWorker(model_path, low_bit)
|
||||
# Load tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, padding_side='left')
|
||||
if tokenizer.pad_token is None:
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
myapp = FastApp(local_model, tokenizer)
|
||||
config = uvicorn.Config(app=myapp.app, host="0.0.0.0", port=args.port)
|
||||
server = uvicorn.Server(config)
|
||||
await server.serve()
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
18
python/llm/src/ipex_llm/serving/fastapi/__init__.py
Normal file
18
python/llm/src/ipex_llm/serving/fastapi/__init__.py
Normal file
|
|
@ -0,0 +1,18 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
from .api_server import FastApp
|
||||
from .model_worker import ModelWorker
|
||||
315
python/llm/src/ipex_llm/serving/fastapi/api_server.py
Normal file
315
python/llm/src/ipex_llm/serving/fastapi/api_server.py
Normal file
|
|
@ -0,0 +1,315 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import os
|
||||
from ipex_llm.utils.common import invalidInputError
|
||||
from transformers.utils import logging
|
||||
from fastapi import FastAPI
|
||||
from fastapi.responses import StreamingResponse
|
||||
from openai.types.chat import ChatCompletionMessageParam
|
||||
from pydantic import BaseModel
|
||||
from ipex_llm.utils.common import invalidInputError
|
||||
import asyncio
|
||||
import uuid
|
||||
from typing import List, Optional, Union, Dict
|
||||
|
||||
|
||||
result_dict: Dict[str, str] = {}
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class PromptRequest(BaseModel):
|
||||
prompt: str
|
||||
n_predict: Optional[int] = 256
|
||||
req_type: str = 'completion'
|
||||
|
||||
|
||||
class ChatCompletionRequest(BaseModel):
|
||||
messages: List[ChatCompletionMessageParam]
|
||||
model: str
|
||||
max_tokens: Optional[int] = None
|
||||
stream: Optional[bool] = False
|
||||
|
||||
|
||||
class CompletionRequest(BaseModel):
|
||||
model: str
|
||||
prompt: Union[List[int], List[List[int]], str, List[str]]
|
||||
max_tokens: Optional[int] = None
|
||||
stream: Optional[bool] = False
|
||||
|
||||
|
||||
app = FastAPI()
|
||||
global tokenizer
|
||||
global local_model
|
||||
|
||||
|
||||
class FastApp():
|
||||
def __init__(self, model, mytokenizer):
|
||||
global tokenizer
|
||||
global local_model
|
||||
local_model = model
|
||||
tokenizer = mytokenizer
|
||||
self.app = app
|
||||
|
||||
|
||||
from .openai_protocol import (
|
||||
ChatCompletionResponseStreamChoice,
|
||||
ChatCompletionStreamResponse,
|
||||
ChatCompletionResponseChoice,
|
||||
ChatCompletionResponse,
|
||||
ChatMessage,
|
||||
DeltaMessage,
|
||||
CompletionResponseChoice,
|
||||
CompletionResponse,
|
||||
CompletionResponseStreamChoice,
|
||||
CompletionStreamResponse,
|
||||
)
|
||||
|
||||
|
||||
def get_queue_next_token(delta_text_queue):
|
||||
timeout = int(os.getenv("IPEX_LLM_FASTAPI_TIMEOUT", 60))
|
||||
delta_text = delta_text_queue.text_queue.get(timeout=timeout)
|
||||
if delta_text is None:
|
||||
remain = 0
|
||||
else:
|
||||
remain = 1
|
||||
return delta_text, remain
|
||||
|
||||
async def chat_stream_generator(local_model, delta_text_queue, request_id):
|
||||
model_name = local_model.model_name
|
||||
index = 0
|
||||
while True:
|
||||
if not hasattr(delta_text_queue, 'empty'):
|
||||
delta_text, remain = get_queue_next_token(delta_text_queue)
|
||||
else:
|
||||
if not delta_text_queue.empty():
|
||||
with local_model.dict_lock:
|
||||
remain, delta_text = await delta_text_queue.get()
|
||||
else:
|
||||
await asyncio.sleep(0)
|
||||
continue
|
||||
if remain == 0 and delta_text is not None or remain != 0:
|
||||
choice_data = ChatCompletionResponseStreamChoice(
|
||||
index=index,
|
||||
delta=DeltaMessage(role="assistant", content=delta_text),
|
||||
logprobs=None,
|
||||
finish_reason=None)
|
||||
chunk = ChatCompletionStreamResponse(
|
||||
id=request_id,
|
||||
choices=[choice_data],
|
||||
model=model_name)
|
||||
data = chunk.model_dump_json(exclude_unset=True)
|
||||
yield f"data: {data}\n\n"
|
||||
index = index + 1
|
||||
if remain == 0:
|
||||
choice_data = ChatCompletionResponseStreamChoice(
|
||||
index=index,
|
||||
delta=DeltaMessage(role="assistant", content=None),
|
||||
logprobs=None,
|
||||
finish_reason="length")
|
||||
chunk = ChatCompletionStreamResponse(
|
||||
id=request_id,
|
||||
choices=[choice_data],
|
||||
model=model_name)
|
||||
data = chunk.model_dump_json(exclude_unset=True)
|
||||
yield f"data: {data}\n\n"
|
||||
break
|
||||
local_model.streamer.pop(request_id, None)
|
||||
|
||||
|
||||
async def completion_stream_generator(local_model, delta_text_queue, request_id):
|
||||
model_name = local_model.model_name
|
||||
index = 0
|
||||
while True:
|
||||
if not hasattr(delta_text_queue, 'empty'):
|
||||
delta_text, remain = get_queue_next_token(delta_text_queue)
|
||||
else:
|
||||
if not delta_text_queue.empty():
|
||||
with local_model.dict_lock:
|
||||
remain, delta_text = await delta_text_queue.get()
|
||||
else:
|
||||
await asyncio.sleep(0)
|
||||
continue
|
||||
if remain == 0 and delta_text is not None or remain != 0:
|
||||
choice_data = CompletionResponseStreamChoice(
|
||||
index=index,
|
||||
text=delta_text,
|
||||
logprobs=None,
|
||||
finish_reason=None)
|
||||
chunk = CompletionStreamResponse(
|
||||
id=request_id,
|
||||
choices=[choice_data],
|
||||
model=model_name)
|
||||
data = chunk.model_dump_json(exclude_unset=True)
|
||||
yield f"data: {data}\n\n"
|
||||
index = index + 1
|
||||
if remain == 0:
|
||||
choice_data = CompletionResponseStreamChoice(
|
||||
index=index,
|
||||
text="",
|
||||
logprobs=None,
|
||||
finish_reason="length")
|
||||
chunk = CompletionStreamResponse(
|
||||
id=request_id,
|
||||
choices=[choice_data],
|
||||
model=model_name)
|
||||
data = chunk.model_dump_json(exclude_unset=True)
|
||||
yield f"data: {data}\n\n"
|
||||
break
|
||||
local_model.streamer.pop(request_id, None)
|
||||
|
||||
|
||||
async def generator(local_model, delta_text_queue, request_id):
|
||||
while True:
|
||||
if not hasattr(delta_text_queue, 'empty'):
|
||||
delta_text, remain = get_queue_next_token(delta_text_queue)
|
||||
if delta_text is None:
|
||||
break
|
||||
else:
|
||||
yield delta_text
|
||||
else:
|
||||
if not delta_text_queue.empty():
|
||||
with local_model.dict_lock:
|
||||
remain, delta_text = await delta_text_queue.get()
|
||||
yield delta_text
|
||||
if remain == 0:
|
||||
break
|
||||
else:
|
||||
await asyncio.sleep(0)
|
||||
continue
|
||||
local_model.streamer.pop(request_id, None)
|
||||
|
||||
|
||||
@app.post("/generate")
|
||||
async def generate(prompt_request: PromptRequest):
|
||||
request_id = str(uuid.uuid4())
|
||||
await local_model.waiting_requests.put((request_id, prompt_request))
|
||||
while True:
|
||||
await asyncio.sleep(0)
|
||||
cur_streamer = local_model.streamer.get(request_id, None)
|
||||
if cur_streamer is not None:
|
||||
output_str = []
|
||||
async for item in generator(local_model, cur_streamer, request_id):
|
||||
output_str.append(item)
|
||||
return request_id, "".join(output_str)
|
||||
|
||||
|
||||
@app.post("/generate_stream")
|
||||
async def generate_stream_api(prompt_request: PromptRequest):
|
||||
request_id, result = await generate_stream(prompt_request)
|
||||
return result
|
||||
|
||||
|
||||
async def generate_stream(prompt_request: PromptRequest):
|
||||
request_id = str(uuid.uuid4()) + "stream"
|
||||
await local_model.waiting_requests.put((request_id, prompt_request))
|
||||
while True:
|
||||
await asyncio.sleep(0)
|
||||
cur_streamer = local_model.streamer.get(request_id, None)
|
||||
if cur_streamer is not None:
|
||||
if prompt_request.req_type == 'completion':
|
||||
cur_generator = completion_stream_generator(local_model, cur_streamer, request_id)
|
||||
elif prompt_request.req_type == 'chat':
|
||||
cur_generator = chat_stream_generator(local_model, cur_streamer, request_id)
|
||||
else:
|
||||
invalidInputError(False, "Invalid Request Type.")
|
||||
|
||||
return request_id, StreamingResponse(
|
||||
content=cur_generator, media_type="text/event-stream"
|
||||
)
|
||||
|
||||
|
||||
def get_prompt(messages) -> str:
|
||||
prompt = ""
|
||||
for msg in messages:
|
||||
role = msg["role"]
|
||||
content = msg["content"]
|
||||
if role == "system":
|
||||
prompt += f"<<SYS>>\n{content}\n<</SYS>>\n\n"
|
||||
elif role == "user":
|
||||
prompt += f"[INST] {content} [/INST] "
|
||||
elif role == "assistant":
|
||||
prompt += f"{content} "
|
||||
else:
|
||||
invalidInputError(False, f"Unknown role: {role}")
|
||||
return prompt.strip()
|
||||
|
||||
|
||||
@app.post("/v1/chat/completions")
|
||||
async def create_chat_completion(request: ChatCompletionRequest):
|
||||
model_name = local_model.model_name
|
||||
if request.max_tokens is None:
|
||||
n_predict = 256
|
||||
else:
|
||||
n_predict = request.max_tokens
|
||||
prompt_request = PromptRequest(
|
||||
prompt=get_prompt(request.messages),
|
||||
n_predict=n_predict,
|
||||
req_type="chat"
|
||||
)
|
||||
if request.stream:
|
||||
request_id, result = await generate_stream(prompt_request)
|
||||
else:
|
||||
request_id, result = await generate(prompt_request)
|
||||
choice_data = ChatCompletionResponseChoice(
|
||||
index=0,
|
||||
message=ChatMessage(role="assistant", content=result),
|
||||
logprobs=None,
|
||||
finish_reason="length")
|
||||
result = ChatCompletionResponse(
|
||||
id=request_id,
|
||||
choices=[choice_data],
|
||||
model=model_name)
|
||||
return result
|
||||
|
||||
|
||||
@app.post("/v1/completions")
|
||||
async def create_completion(request: CompletionRequest):
|
||||
model_name = local_model.model_name
|
||||
if request.max_tokens is None:
|
||||
n_predict = 256
|
||||
else:
|
||||
n_predict = request.max_tokens
|
||||
prompt_request = PromptRequest(
|
||||
prompt=request.prompt,
|
||||
n_predict=n_predict,
|
||||
req_type="completion"
|
||||
)
|
||||
if request.stream:
|
||||
request_id, result = await generate_stream(prompt_request)
|
||||
else:
|
||||
request_id, result = await generate(prompt_request)
|
||||
choice_data = CompletionResponseChoice(
|
||||
index=0,
|
||||
text=result,
|
||||
logprobs=None,
|
||||
finish_reason="length")
|
||||
result = CompletionResponse(
|
||||
id=request_id,
|
||||
choices=[choice_data],
|
||||
model=model_name)
|
||||
return result
|
||||
|
||||
|
||||
@app.on_event("startup")
|
||||
async def startup_event():
|
||||
asyncio.create_task(process_requests(local_model, result_dict))
|
||||
|
||||
|
||||
async def process_requests(local_model, result_dict):
|
||||
while True:
|
||||
await asyncio.sleep(0)
|
||||
await local_model.process_step(tokenizer, result_dict)
|
||||
82
python/llm/src/ipex_llm/serving/fastapi/model_worker.py
Normal file
82
python/llm/src/ipex_llm/serving/fastapi/model_worker.py
Normal file
|
|
@ -0,0 +1,82 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import torch
|
||||
from transformers.utils import logging
|
||||
import time
|
||||
import asyncio
|
||||
from transformers import TextIteratorStreamer
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class ModelWorker:
|
||||
def __init__(self, checkpoint, low_bit, torch_dtype=torch.float16):
|
||||
self.dtype = torch_dtype
|
||||
start = time.perf_counter()
|
||||
model = self.load_model(checkpoint, low_bit)
|
||||
from ipex_llm.utils.benchmark_util import BenchmarkWrapper
|
||||
self.model = BenchmarkWrapper(model, do_print=True)
|
||||
end = time.perf_counter()
|
||||
logger.info(f"Time to load weights: {end - start:.2f}s")
|
||||
self.waiting_requests = asyncio.Queue()
|
||||
self.streamer = {}
|
||||
self.model_name = checkpoint
|
||||
|
||||
def load_model(self, model_path, low_bit='sym_int4'):
|
||||
from ipex_llm.transformers import AutoModelForCausalLM, AutoModel
|
||||
try:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path,
|
||||
load_in_low_bit=low_bit,
|
||||
torch_dtype=self.dtype,
|
||||
optimize_model=True,
|
||||
trust_remote_code=True,
|
||||
use_cache=True,)
|
||||
except:
|
||||
model = AutoModel.from_pretrained(model_path,
|
||||
load_in_low_bit=low_bit,
|
||||
torch_dtype=self.dtype,
|
||||
optimize_model=True,
|
||||
trust_remote_code=True,
|
||||
use_cache=True,)
|
||||
model = model.eval().to("xpu")
|
||||
return model
|
||||
|
||||
async def add_request(self, tokenizer):
|
||||
if self.waiting_requests.empty():
|
||||
return
|
||||
tmp_result = await self.waiting_requests.get()
|
||||
request_id, prompt_request = tmp_result
|
||||
plain_texts = prompt_request.prompt
|
||||
inputs = tokenizer(plain_texts, return_tensors="pt", padding=True)
|
||||
input_ids = inputs.input_ids.to('xpu')
|
||||
max_tokens = prompt_request.n_predict
|
||||
return input_ids, max_tokens, request_id
|
||||
|
||||
@torch.no_grad()
|
||||
async def process_step(self, tokenizer, result_dict):
|
||||
if not self.waiting_requests.empty():
|
||||
input_ids, max_tokens, request_id = await self.add_request(tokenizer)
|
||||
self.streamer[request_id] = TextIteratorStreamer(tokenizer, skip_prompt=True)
|
||||
|
||||
def model_generate():
|
||||
self.model.generate(input_ids,
|
||||
streamer=self.streamer[request_id], max_new_tokens=max_tokens)
|
||||
torch.xpu.empty_cache()
|
||||
torch.xpu.synchronize()
|
||||
|
||||
from threading import Thread
|
||||
t1 = Thread(target=model_generate)
|
||||
t1.start()
|
||||
|
|
@ -15,6 +15,7 @@
|
|||
#
|
||||
# Adapted from
|
||||
# https://github.com/lm-sys/FastChat/blob/168ccc29d3f7edc50823016105c024fe2282732a/fastchat/protocol/openai_api_protocol.py
|
||||
|
||||
import time
|
||||
from typing import Dict, List, Literal, Optional, Union
|
||||
|
||||
|
|
@ -22,11 +23,14 @@ import torch
|
|||
from openai.types.chat import ChatCompletionMessageParam
|
||||
from pydantic import BaseModel, ConfigDict, Field, model_validator
|
||||
from typing_extensions import Annotated
|
||||
from ipex_llm.utils.common import invalidInputError
|
||||
|
||||
|
||||
# from vllm.sampling_params import SamplingParams
|
||||
def random_uuid() -> str:
|
||||
return str(uuid.uuid4().hex)
|
||||
|
||||
|
||||
class OpenAIBaseModel(BaseModel):
|
||||
# OpenAI API does not allow extra fields
|
||||
model_config = ConfigDict(extra="forbid")
|
||||
|
|
@ -127,8 +131,8 @@ class ChatCompletionRequest(OpenAIBaseModel):
|
|||
)
|
||||
add_generation_prompt: Optional[bool] = Field(
|
||||
default=True,
|
||||
description=
|
||||
("If true, the generation prompt will be added to the chat template. "
|
||||
description=(
|
||||
"If true, the generation prompt will be added to the chat template. "
|
||||
"This is a parameter used by chat template in tokenizer config of the "
|
||||
"model."),
|
||||
)
|
||||
|
|
@ -179,7 +183,7 @@ class ChatCompletionRequest(OpenAIBaseModel):
|
|||
"guided_choice" in data and data["guided_choice"] is not None
|
||||
])
|
||||
if guide_count > 1:
|
||||
raise ValueError(
|
||||
invalidInputError(False,
|
||||
"You can only use one kind of guided decoding "
|
||||
"('guided_json', 'guided_regex' or 'guided_choice').")
|
||||
return data
|
||||
|
|
@ -232,8 +236,8 @@ class CompletionRequest(OpenAIBaseModel):
|
|||
)
|
||||
response_format: Optional[ResponseFormat] = Field(
|
||||
default=None,
|
||||
description=
|
||||
("Similar to chat completion, this parameter specifies the format of "
|
||||
description=(
|
||||
"Similar to chat completion, this parameter specifies the format of "
|
||||
"output. Only {'type': 'json_object'} or {'type': 'text' } is "
|
||||
"supported."),
|
||||
)
|
||||
|
|
@ -279,7 +283,7 @@ class CompletionRequest(OpenAIBaseModel):
|
|||
"guided_choice" in data and data["guided_choice"] is not None
|
||||
])
|
||||
if guide_count > 1:
|
||||
raise ValueError(
|
||||
invalidInputError(False,
|
||||
"You can only use one kind of guided decoding "
|
||||
"('guided_json', 'guided_regex' or 'guided_choice').")
|
||||
return data
|
||||
|
|
@ -22,4 +22,4 @@ from .model import AutoModelForCausalLM, AutoModel, AutoModelForSeq2SeqLM, \
|
|||
AutoModelForNextSentencePrediction, AutoModelForMultipleChoice, \
|
||||
AutoModelForTokenClassification
|
||||
from .modelling_bigdl import *
|
||||
from .pipeline_parallel import init_pipeline_parallel, ModelRunner
|
||||
from .pipeline_parallel import init_pipeline_parallel, PPModelWorker
|
||||
|
|
|
|||
|
|
@ -468,7 +468,7 @@ def make_attention_mask(prompt_lengths):
|
|||
return attention_mask
|
||||
|
||||
|
||||
class ModelRunner:
|
||||
class PPModelWorker:
|
||||
"""Implementation for pipeline parallel multi-stage serving."""
|
||||
def __init__(self, checkpoint, rank, world_size, low_bit, max_num_seqs, max_prefilled_seqs,
|
||||
torch_dtype=torch.float16):
|
||||
|
|
|
|||
Loading…
Reference in a new issue