* init fastapi-serving one card * mv api code to source * update worker * update for style-check * add worker * update bash * update * update worker name and add readme * rename update * rename to fastapi
53 lines
No EOL
2.2 KiB
Python
53 lines
No EOL
2.2 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import torch
|
|
from transformers.utils import logging
|
|
import time
|
|
from transformers import AutoTokenizer
|
|
import uvicorn
|
|
import asyncio
|
|
import argparse
|
|
from ipex_llm.serving.fastapi import FastApp
|
|
from ipex_llm.serving.fastapi import ModelWorker
|
|
logger = logging.get_logger(__name__)
|
|
|
|
async def main():
|
|
parser = argparse.ArgumentParser(description='Predict Tokens using fastapi by leveraging ipex-llm')
|
|
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
|
|
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf`, `meta-llama/Llama-2-13b-chat-hf` and `meta-llama/Llama-2-70b-chat-hf`) to be downloaded'
|
|
', or the path to the huggingface checkpoint folder')
|
|
parser.add_argument('--low-bit', type=str, default='sym_int4',
|
|
help='The quantization type the model will convert to.')
|
|
parser.add_argument('--port', type=int, default=8000,
|
|
help='The port number on which the server will run.')
|
|
|
|
args = parser.parse_args()
|
|
model_path = args.repo_id_or_model_path
|
|
low_bit = args.low_bit
|
|
|
|
local_model = ModelWorker(model_path, low_bit)
|
|
# Load tokenizer
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, padding_side='left')
|
|
if tokenizer.pad_token is None:
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
myapp = FastApp(local_model, tokenizer)
|
|
config = uvicorn.Config(app=myapp.app, host="0.0.0.0", port=args.port)
|
|
server = uvicorn.Server(config)
|
|
await server.serve()
|
|
|
|
if __name__ == "__main__":
|
|
asyncio.run(main()) |