Refactor fastapi-serving and add one card serving(#11581)
* init fastapi-serving one card * mv api code to source * update worker * update for style-check * add worker * update bash * update * update worker name and add readme * rename update * rename to fastapi
This commit is contained in:
parent
373ccbbb0c
commit
9c15abf825
19 changed files with 583 additions and 367 deletions
|
|
@ -61,7 +61,7 @@ RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRO
|
||||||
cp -r ./ipex-llm/python/llm/example/GPU/vLLM-Serving/ ./vLLM-Serving && \
|
cp -r ./ipex-llm/python/llm/example/GPU/vLLM-Serving/ ./vLLM-Serving && \
|
||||||
# Download pp_serving
|
# Download pp_serving
|
||||||
mkdir -p /llm/pp_serving && \
|
mkdir -p /llm/pp_serving && \
|
||||||
cp ./ipex-llm/python/llm/example/GPU/Pipeline-Parallel-FastAPI/*.py /llm/pp_serving/ && \
|
cp ./ipex-llm/python/llm/example/GPU/Pipeline-Parallel-Serving/*.py /llm/pp_serving/ && \
|
||||||
# Install related library of benchmarking
|
# Install related library of benchmarking
|
||||||
pip install pandas omegaconf && \
|
pip install pandas omegaconf && \
|
||||||
chmod +x /llm/benchmark.sh && \
|
chmod +x /llm/benchmark.sh && \
|
||||||
|
|
|
||||||
|
|
@ -1,346 +0,0 @@
|
||||||
#
|
|
||||||
# Copyright 2016 The BigDL Authors.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
#
|
|
||||||
|
|
||||||
import torch.nn.parallel
|
|
||||||
import torch.distributed as dist
|
|
||||||
import os
|
|
||||||
|
|
||||||
from ipex_llm.utils.common import invalidInputError
|
|
||||||
from ipex_llm.transformers import init_pipeline_parallel, ModelRunner
|
|
||||||
import oneccl_bindings_for_pytorch
|
|
||||||
import json
|
|
||||||
|
|
||||||
from transformers.utils import logging
|
|
||||||
logger = logging.get_logger(__name__)
|
|
||||||
|
|
||||||
init_pipeline_parallel()
|
|
||||||
|
|
||||||
my_rank = dist.get_rank()
|
|
||||||
my_size = dist.get_world_size()
|
|
||||||
device = f"xpu:{my_rank}"
|
|
||||||
logger.info(f"rank: {my_rank}, size: {my_size}")
|
|
||||||
|
|
||||||
import time
|
|
||||||
from transformers import AutoTokenizer
|
|
||||||
from fastapi import FastAPI, HTTPException, Request
|
|
||||||
from fastapi.responses import StreamingResponse
|
|
||||||
from pydantic import BaseModel
|
|
||||||
import uvicorn
|
|
||||||
import asyncio, uuid
|
|
||||||
from typing import Dict, List, Optional, Any, Callable, Union
|
|
||||||
import argparse
|
|
||||||
|
|
||||||
|
|
||||||
class PromptRequest(BaseModel):
|
|
||||||
prompt: str
|
|
||||||
n_predict: Optional[int] = 256
|
|
||||||
req_type: str = 'completion'
|
|
||||||
|
|
||||||
from openai.types.chat import ChatCompletionMessageParam
|
|
||||||
class ChatCompletionRequest(BaseModel):
|
|
||||||
messages: List[ChatCompletionMessageParam]
|
|
||||||
model: str
|
|
||||||
max_tokens: Optional[int] = None
|
|
||||||
stream: Optional[bool] = False
|
|
||||||
|
|
||||||
|
|
||||||
class CompletionRequest(BaseModel):
|
|
||||||
model: str
|
|
||||||
prompt: Union[List[int], List[List[int]], str, List[str]]
|
|
||||||
max_tokens: Optional[int] = None
|
|
||||||
stream: Optional[bool] = False
|
|
||||||
|
|
||||||
empty_req = PromptRequest(prompt="", n_predict=0)
|
|
||||||
|
|
||||||
app = FastAPI()
|
|
||||||
global tokenizer
|
|
||||||
global local_model
|
|
||||||
|
|
||||||
request_queue: asyncio.Queue = asyncio.Queue()
|
|
||||||
result_dict: Dict[str, str] = {}
|
|
||||||
streamer_dict = {}
|
|
||||||
local_rank = my_rank
|
|
||||||
|
|
||||||
|
|
||||||
from openai_protocol import (
|
|
||||||
ChatCompletionResponseStreamChoice,
|
|
||||||
ChatCompletionStreamResponse,
|
|
||||||
ChatCompletionResponseChoice,
|
|
||||||
ChatCompletionResponse,
|
|
||||||
ChatMessage,
|
|
||||||
DeltaMessage,
|
|
||||||
CompletionResponseChoice,
|
|
||||||
CompletionResponse,
|
|
||||||
CompletionResponseStreamChoice,
|
|
||||||
CompletionStreamResponse,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
async def chat_stream_generator(local_model, delta_text_queue, request_id):
|
|
||||||
model_name = local_model.model_name
|
|
||||||
index = 0
|
|
||||||
while True:
|
|
||||||
if not delta_text_queue.empty():
|
|
||||||
with local_model.dict_lock:
|
|
||||||
remain, delta_text = await delta_text_queue.get()
|
|
||||||
# print(remain)
|
|
||||||
choice_data = ChatCompletionResponseStreamChoice(
|
|
||||||
index=index,
|
|
||||||
delta=DeltaMessage(role="assistant", content=delta_text),
|
|
||||||
logprobs=None,
|
|
||||||
finish_reason=None)
|
|
||||||
chunk = ChatCompletionStreamResponse(
|
|
||||||
id=request_id,
|
|
||||||
choices=[choice_data],
|
|
||||||
model=model_name)
|
|
||||||
data = chunk.model_dump_json(exclude_unset=True)
|
|
||||||
yield f"data: {data}\n\n"
|
|
||||||
index = index + 1
|
|
||||||
if remain == 0:
|
|
||||||
choice_data = ChatCompletionResponseStreamChoice(
|
|
||||||
index=index,
|
|
||||||
delta=DeltaMessage(role="assistant", content=None),
|
|
||||||
logprobs=None,
|
|
||||||
finish_reason="length")
|
|
||||||
chunk = ChatCompletionStreamResponse(
|
|
||||||
id=request_id,
|
|
||||||
choices=[choice_data],
|
|
||||||
model=model_name)
|
|
||||||
data = chunk.model_dump_json(exclude_unset=True)
|
|
||||||
yield f"data: {data}\n\n"
|
|
||||||
break
|
|
||||||
else:
|
|
||||||
await asyncio.sleep(0)
|
|
||||||
local_model.streamer.pop(request_id, None)
|
|
||||||
|
|
||||||
|
|
||||||
async def completion_stream_generator(local_model, delta_text_queue, request_id):
|
|
||||||
model_name = local_model.model_name
|
|
||||||
index = 0
|
|
||||||
while True:
|
|
||||||
if not delta_text_queue.empty():
|
|
||||||
with local_model.dict_lock:
|
|
||||||
remain, delta_text = await delta_text_queue.get()
|
|
||||||
# print(remain)
|
|
||||||
choice_data = CompletionResponseStreamChoice(
|
|
||||||
index=index,
|
|
||||||
text=delta_text,
|
|
||||||
logprobs=None,
|
|
||||||
finish_reason=None)
|
|
||||||
chunk = CompletionStreamResponse(
|
|
||||||
id=request_id,
|
|
||||||
choices=[choice_data],
|
|
||||||
model=model_name)
|
|
||||||
data = chunk.model_dump_json(exclude_unset=True)
|
|
||||||
yield f"data: {data}\n\n"
|
|
||||||
index = index + 1
|
|
||||||
if remain == 0:
|
|
||||||
choice_data = CompletionResponseStreamChoice(
|
|
||||||
index=index,
|
|
||||||
text="",
|
|
||||||
logprobs=None,
|
|
||||||
finish_reason="length")
|
|
||||||
chunk = CompletionStreamResponse(
|
|
||||||
id=request_id,
|
|
||||||
choices=[choice_data],
|
|
||||||
model=model_name)
|
|
||||||
data = chunk.model_dump_json(exclude_unset=True)
|
|
||||||
yield f"data: {data}\n\n"
|
|
||||||
break
|
|
||||||
else:
|
|
||||||
await asyncio.sleep(0)
|
|
||||||
local_model.streamer.pop(request_id, None)
|
|
||||||
|
|
||||||
|
|
||||||
async def generator(local_model, delta_text_queue, request_id):
|
|
||||||
while True:
|
|
||||||
if not delta_text_queue.empty():
|
|
||||||
with local_model.dict_lock:
|
|
||||||
remain, delta_text = await delta_text_queue.get()
|
|
||||||
yield delta_text
|
|
||||||
if remain == 0:
|
|
||||||
break
|
|
||||||
else:
|
|
||||||
await asyncio.sleep(0)
|
|
||||||
local_model.streamer.pop(request_id, None)
|
|
||||||
|
|
||||||
|
|
||||||
@app.post("/generate/")
|
|
||||||
async def generate(prompt_request: PromptRequest):
|
|
||||||
request_id = str(uuid.uuid4())
|
|
||||||
await local_model.waiting_requests.put((request_id, prompt_request))
|
|
||||||
while True:
|
|
||||||
await asyncio.sleep(0)
|
|
||||||
cur_streamer = local_model.streamer.get(request_id, None)
|
|
||||||
if cur_streamer is not None:
|
|
||||||
output_str = []
|
|
||||||
async for item in generator(local_model, cur_streamer, request_id):
|
|
||||||
output_str.append(item)
|
|
||||||
return request_id, "".join(output_str)
|
|
||||||
|
|
||||||
|
|
||||||
async def generate_stream(prompt_request: PromptRequest):
|
|
||||||
request_id = str(uuid.uuid4()) + "stream"
|
|
||||||
await local_model.waiting_requests.put((request_id, prompt_request))
|
|
||||||
while True:
|
|
||||||
await asyncio.sleep(0)
|
|
||||||
cur_streamer = local_model.streamer.get(request_id, None)
|
|
||||||
if cur_streamer is not None:
|
|
||||||
if prompt_request.req_type == 'completion':
|
|
||||||
cur_generator = completion_stream_generator(local_model, cur_streamer, request_id)
|
|
||||||
elif prompt_request.req_type == 'chat':
|
|
||||||
cur_generator = chat_stream_generator(local_model, cur_streamer, request_id)
|
|
||||||
else:
|
|
||||||
invalidInputError(False, "Invalid Request Type.")
|
|
||||||
|
|
||||||
return request_id, StreamingResponse(
|
|
||||||
content=cur_generator, media_type="text/event-stream"
|
|
||||||
)
|
|
||||||
|
|
||||||
@app.post("/generate_stream/")
|
|
||||||
async def generate_stream_api(prompt_request: PromptRequest):
|
|
||||||
request_id, result = await generate_stream(prompt_request)
|
|
||||||
return result
|
|
||||||
|
|
||||||
|
|
||||||
DEFAULT_SYSTEM_PROMPT = """\
|
|
||||||
"""
|
|
||||||
|
|
||||||
def get_prompt(messages) -> str:
|
|
||||||
prompt = ""
|
|
||||||
for msg in messages:
|
|
||||||
role = msg["role"]
|
|
||||||
content = msg["content"]
|
|
||||||
if role == "system":
|
|
||||||
prompt += f"<<SYS>>\n{content}\n<</SYS>>\n\n"
|
|
||||||
elif role == "user":
|
|
||||||
prompt += f"[INST] {content} [/INST] "
|
|
||||||
elif role == "assistant":
|
|
||||||
prompt += f"{content} "
|
|
||||||
else:
|
|
||||||
raise ValueError(f"Unknown role: {role}")
|
|
||||||
return prompt.strip()
|
|
||||||
|
|
||||||
@app.post("/v1/chat/completions")
|
|
||||||
async def create_chat_completion(request: ChatCompletionRequest):
|
|
||||||
model_name = local_model.model_name
|
|
||||||
if request.max_tokens is None:
|
|
||||||
n_predict = 256
|
|
||||||
else:
|
|
||||||
n_predict = request.max_tokens
|
|
||||||
prompt_request = PromptRequest(
|
|
||||||
prompt=get_prompt(request.messages),
|
|
||||||
n_predict=n_predict,
|
|
||||||
req_type="chat"
|
|
||||||
)
|
|
||||||
if request.stream:
|
|
||||||
request_id, result = await generate_stream(prompt_request)
|
|
||||||
else:
|
|
||||||
request_id, result = await generate(prompt_request)
|
|
||||||
choice_data = ChatCompletionResponseChoice(
|
|
||||||
index=0,
|
|
||||||
message=ChatMessage(role="assistant", content=result),
|
|
||||||
logprobs=None,
|
|
||||||
finish_reason="length")
|
|
||||||
result = ChatCompletionResponse(
|
|
||||||
id=request_id,
|
|
||||||
choices=[choice_data],
|
|
||||||
model=model_name)
|
|
||||||
return result
|
|
||||||
|
|
||||||
@app.post("/v1/completions")
|
|
||||||
async def create_completion(request: CompletionRequest):
|
|
||||||
model_name = local_model.model_name
|
|
||||||
if request.max_tokens is None:
|
|
||||||
n_predict = 256
|
|
||||||
else:
|
|
||||||
n_predict = request.max_tokens
|
|
||||||
prompt_request = PromptRequest(
|
|
||||||
prompt=request.prompt,
|
|
||||||
n_predict=n_predict,
|
|
||||||
req_type="completion"
|
|
||||||
)
|
|
||||||
if request.stream:
|
|
||||||
request_id, result = await generate_stream(prompt_request)
|
|
||||||
else:
|
|
||||||
request_id, result = await generate(prompt_request)
|
|
||||||
choice_data = CompletionResponseChoice(
|
|
||||||
index=0,
|
|
||||||
text=result,
|
|
||||||
logprobs=None,
|
|
||||||
finish_reason="length")
|
|
||||||
result = CompletionResponse(
|
|
||||||
id=request_id,
|
|
||||||
choices=[choice_data],
|
|
||||||
model=model_name)
|
|
||||||
return result
|
|
||||||
|
|
||||||
|
|
||||||
async def process_requests(local_model, result_dict):
|
|
||||||
while True:
|
|
||||||
await asyncio.sleep(0)
|
|
||||||
await local_model.process_step(tokenizer, result_dict)
|
|
||||||
|
|
||||||
|
|
||||||
@app.on_event("startup")
|
|
||||||
async def startup_event():
|
|
||||||
asyncio.create_task(process_requests(local_model, result_dict))
|
|
||||||
|
|
||||||
async def main():
|
|
||||||
parser = argparse.ArgumentParser(description='Predict Tokens using fastapi by leveraging DeepSpeed-AutoTP')
|
|
||||||
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
|
|
||||||
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf`, `meta-llama/Llama-2-13b-chat-hf` and `meta-llama/Llama-2-70b-chat-hf`) to be downloaded'
|
|
||||||
', or the path to the huggingface checkpoint folder')
|
|
||||||
parser.add_argument('--low-bit', type=str, default='sym_int4',
|
|
||||||
help='The quantization type the model will convert to.')
|
|
||||||
parser.add_argument('--port', type=int, default=8000,
|
|
||||||
help='The port number on which the server will run.')
|
|
||||||
parser.add_argument('--max-num-seqs', type=int, default=8,
|
|
||||||
help='Max num sequences in a batch.')
|
|
||||||
parser.add_argument('--max-prefilled-seqs', type=int, default=0,
|
|
||||||
help='Max num sequences in a batch during prefilling.')
|
|
||||||
|
|
||||||
args = parser.parse_args()
|
|
||||||
model_path = args.repo_id_or_model_path
|
|
||||||
low_bit = args.low_bit
|
|
||||||
max_num_seqs = args.max_num_seqs
|
|
||||||
max_prefilled_seqs = args.max_prefilled_seqs
|
|
||||||
|
|
||||||
# serialize model initialization so that we do not run out of CPU memory
|
|
||||||
for i in range(my_size):
|
|
||||||
if my_rank == i:
|
|
||||||
logger.info("start model initialization")
|
|
||||||
global local_model
|
|
||||||
local_model = ModelRunner(model_path, my_rank, my_size, low_bit, max_num_seqs, max_prefilled_seqs)
|
|
||||||
logger.info("model initialized")
|
|
||||||
dist.barrier()
|
|
||||||
# Load tokenizer
|
|
||||||
global tokenizer
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, padding_side='left')
|
|
||||||
if tokenizer.pad_token is None:
|
|
||||||
tokenizer.pad_token = tokenizer.eos_token
|
|
||||||
|
|
||||||
if local_rank == 0:
|
|
||||||
config = uvicorn.Config(app=app, host="0.0.0.0", port=args.port)
|
|
||||||
server = uvicorn.Server(config)
|
|
||||||
await server.serve()
|
|
||||||
else:
|
|
||||||
while True:
|
|
||||||
await asyncio.sleep(0)
|
|
||||||
await local_model.process_step(tokenizer, result_dict)
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
asyncio.run(main())
|
|
||||||
|
|
@ -50,7 +50,14 @@ pip install transformers==4.40.0
|
||||||
pip install trl==0.8.1
|
pip install trl==0.8.1
|
||||||
```
|
```
|
||||||
|
|
||||||
### 2. Run pipeline parallel serving on multiple GPUs
|
### 2-1. Run ipex-llm serving on one GPU card
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Need to set NUM_GPUS=1 and MODEL_PATH in run.sh first
|
||||||
|
bash run.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2-2. Run pipeline parallel serving on multiple GPUs
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
# Need to set MODEL_PATH in run.sh first
|
# Need to set MODEL_PATH in run.sh first
|
||||||
|
|
@ -76,7 +83,7 @@ export http_proxy=
|
||||||
export https_proxy=
|
export https_proxy=
|
||||||
|
|
||||||
curl -X 'POST' \
|
curl -X 'POST' \
|
||||||
'http://127.0.0.1:8000/generate/' \
|
'http://127.0.0.1:8000/generate' \
|
||||||
-H 'accept: application/json' \
|
-H 'accept: application/json' \
|
||||||
-H 'Content-Type: application/json' \
|
-H 'Content-Type: application/json' \
|
||||||
-d '{
|
-d '{
|
||||||
|
|
@ -99,7 +106,7 @@ Please change the test url accordingly.
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
# set t/c to the number of concurrencies to test full throughput.
|
# set t/c to the number of concurrencies to test full throughput.
|
||||||
wrk -t1 -c1 -d5m -s ./wrk_script_1024.lua http://127.0.0.1:8000/generate/ --timeout 1m
|
wrk -t1 -c1 -d5m -s ./wrk_script_1024.lua http://127.0.0.1:8000/generate --timeout 1m
|
||||||
```
|
```
|
||||||
|
|
||||||
## 5. Using the `benchmark.py` Script
|
## 5. Using the `benchmark.py` Script
|
||||||
|
|
@ -0,0 +1,78 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
import torch.distributed as dist
|
||||||
|
from ipex_llm.transformers import init_pipeline_parallel, PPModelWorker
|
||||||
|
from ipex_llm.serving.fastapi import FastApp
|
||||||
|
from transformers.utils import logging
|
||||||
|
from transformers import AutoTokenizer
|
||||||
|
import uvicorn
|
||||||
|
import asyncio
|
||||||
|
from typing import Dict
|
||||||
|
import argparse
|
||||||
|
logger = logging.get_logger(__name__)
|
||||||
|
|
||||||
|
init_pipeline_parallel()
|
||||||
|
my_rank = dist.get_rank()
|
||||||
|
my_size = dist.get_world_size()
|
||||||
|
device = f"xpu:{my_rank}"
|
||||||
|
logger.info(f"rank: {my_rank}, size: {my_size}")
|
||||||
|
result_dict: Dict[str, str] = {}
|
||||||
|
local_rank = my_rank
|
||||||
|
|
||||||
|
async def main():
|
||||||
|
parser = argparse.ArgumentParser(description='Predict Tokens using fastapi by leveraging Pipeline-Parallel')
|
||||||
|
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
|
||||||
|
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf`, `meta-llama/Llama-2-13b-chat-hf` and `meta-llama/Llama-2-70b-chat-hf`) to be downloaded'
|
||||||
|
', or the path to the huggingface checkpoint folder')
|
||||||
|
parser.add_argument('--low-bit', type=str, default='sym_int4',
|
||||||
|
help='The quantization type the model will convert to.')
|
||||||
|
parser.add_argument('--port', type=int, default=8000,
|
||||||
|
help='The port number on which the server will run.')
|
||||||
|
parser.add_argument('--max-num-seqs', type=int, default=8,
|
||||||
|
help='Max num sequences in a batch.')
|
||||||
|
parser.add_argument('--max-prefilled-seqs', type=int, default=0,
|
||||||
|
help='Max num sequences in a batch during prefilling.')
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
model_path = args.repo_id_or_model_path
|
||||||
|
low_bit = args.low_bit
|
||||||
|
max_num_seqs = args.max_num_seqs
|
||||||
|
max_prefilled_seqs = args.max_prefilled_seqs
|
||||||
|
|
||||||
|
# serialize model initialization so that we do not run out of CPU memory
|
||||||
|
for i in range(my_size):
|
||||||
|
if my_rank == i:
|
||||||
|
logger.info("start model initialization")
|
||||||
|
local_model = PPModelWorker(model_path, my_rank, my_size, low_bit, max_num_seqs, max_prefilled_seqs)
|
||||||
|
logger.info("model initialized")
|
||||||
|
dist.barrier()
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, padding_side='left')
|
||||||
|
if tokenizer.pad_token is None:
|
||||||
|
tokenizer.pad_token = tokenizer.eos_token
|
||||||
|
|
||||||
|
myapp = FastApp(local_model, tokenizer)
|
||||||
|
if local_rank == 0:
|
||||||
|
config = uvicorn.Config(app=myapp.app, host="0.0.0.0", port=args.port)
|
||||||
|
server = uvicorn.Server(config)
|
||||||
|
await server.serve()
|
||||||
|
else:
|
||||||
|
while True:
|
||||||
|
await asyncio.sleep(0)
|
||||||
|
await local_model.process_step(tokenizer, result_dict)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
asyncio.run(main())
|
||||||
|
|
@ -40,4 +40,9 @@ export LOW_BIT="fp8"
|
||||||
export MAX_NUM_SEQS="4"
|
export MAX_NUM_SEQS="4"
|
||||||
export MAX_PREFILLED_SEQS=0
|
export MAX_PREFILLED_SEQS=0
|
||||||
|
|
||||||
CCL_ZE_IPC_EXCHANGE=sockets torchrun --standalone --nnodes=1 --nproc-per-node $NUM_GPUS pipeline_serving.py --repo-id-or-model-path $MODEL_PATH --low-bit $LOW_BIT --max-num-seqs $MAX_NUM_SEQS --max-prefilled-seqs $MAX_PREFILLED_SEQS
|
if [[ $NUM_GPUS -eq 1 ]]; then
|
||||||
|
export ZE_AFFINITY_MASK=0
|
||||||
|
python serving.py --repo-id-or-model-path $MODEL_PATH --low-bit $LOW_BIT
|
||||||
|
else
|
||||||
|
CCL_ZE_IPC_EXCHANGE=sockets torchrun --standalone --nnodes=1 --nproc-per-node $NUM_GPUS pipeline_serving.py --repo-id-or-model-path $MODEL_PATH --low-bit $LOW_BIT --max-num-seqs $MAX_NUM_SEQS --max-prefilled-seqs $MAX_PREFILLED_SEQS
|
||||||
|
fi
|
||||||
53
python/llm/example/GPU/Pipeline-Parallel-Serving/serving.py
Normal file
53
python/llm/example/GPU/Pipeline-Parallel-Serving/serving.py
Normal file
|
|
@ -0,0 +1,53 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from transformers.utils import logging
|
||||||
|
import time
|
||||||
|
from transformers import AutoTokenizer
|
||||||
|
import uvicorn
|
||||||
|
import asyncio
|
||||||
|
import argparse
|
||||||
|
from ipex_llm.serving.fastapi import FastApp
|
||||||
|
from ipex_llm.serving.fastapi import ModelWorker
|
||||||
|
logger = logging.get_logger(__name__)
|
||||||
|
|
||||||
|
async def main():
|
||||||
|
parser = argparse.ArgumentParser(description='Predict Tokens using fastapi by leveraging ipex-llm')
|
||||||
|
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
|
||||||
|
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf`, `meta-llama/Llama-2-13b-chat-hf` and `meta-llama/Llama-2-70b-chat-hf`) to be downloaded'
|
||||||
|
', or the path to the huggingface checkpoint folder')
|
||||||
|
parser.add_argument('--low-bit', type=str, default='sym_int4',
|
||||||
|
help='The quantization type the model will convert to.')
|
||||||
|
parser.add_argument('--port', type=int, default=8000,
|
||||||
|
help='The port number on which the server will run.')
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
model_path = args.repo_id_or_model_path
|
||||||
|
low_bit = args.low_bit
|
||||||
|
|
||||||
|
local_model = ModelWorker(model_path, low_bit)
|
||||||
|
# Load tokenizer
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, padding_side='left')
|
||||||
|
if tokenizer.pad_token is None:
|
||||||
|
tokenizer.pad_token = tokenizer.eos_token
|
||||||
|
myapp = FastApp(local_model, tokenizer)
|
||||||
|
config = uvicorn.Config(app=myapp.app, host="0.0.0.0", port=args.port)
|
||||||
|
server = uvicorn.Server(config)
|
||||||
|
await server.serve()
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
asyncio.run(main())
|
||||||
18
python/llm/src/ipex_llm/serving/fastapi/__init__.py
Normal file
18
python/llm/src/ipex_llm/serving/fastapi/__init__.py
Normal file
|
|
@ -0,0 +1,18 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
from .api_server import FastApp
|
||||||
|
from .model_worker import ModelWorker
|
||||||
315
python/llm/src/ipex_llm/serving/fastapi/api_server.py
Normal file
315
python/llm/src/ipex_llm/serving/fastapi/api_server.py
Normal file
|
|
@ -0,0 +1,315 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
import os
|
||||||
|
from ipex_llm.utils.common import invalidInputError
|
||||||
|
from transformers.utils import logging
|
||||||
|
from fastapi import FastAPI
|
||||||
|
from fastapi.responses import StreamingResponse
|
||||||
|
from openai.types.chat import ChatCompletionMessageParam
|
||||||
|
from pydantic import BaseModel
|
||||||
|
from ipex_llm.utils.common import invalidInputError
|
||||||
|
import asyncio
|
||||||
|
import uuid
|
||||||
|
from typing import List, Optional, Union, Dict
|
||||||
|
|
||||||
|
|
||||||
|
result_dict: Dict[str, str] = {}
|
||||||
|
logger = logging.get_logger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class PromptRequest(BaseModel):
|
||||||
|
prompt: str
|
||||||
|
n_predict: Optional[int] = 256
|
||||||
|
req_type: str = 'completion'
|
||||||
|
|
||||||
|
|
||||||
|
class ChatCompletionRequest(BaseModel):
|
||||||
|
messages: List[ChatCompletionMessageParam]
|
||||||
|
model: str
|
||||||
|
max_tokens: Optional[int] = None
|
||||||
|
stream: Optional[bool] = False
|
||||||
|
|
||||||
|
|
||||||
|
class CompletionRequest(BaseModel):
|
||||||
|
model: str
|
||||||
|
prompt: Union[List[int], List[List[int]], str, List[str]]
|
||||||
|
max_tokens: Optional[int] = None
|
||||||
|
stream: Optional[bool] = False
|
||||||
|
|
||||||
|
|
||||||
|
app = FastAPI()
|
||||||
|
global tokenizer
|
||||||
|
global local_model
|
||||||
|
|
||||||
|
|
||||||
|
class FastApp():
|
||||||
|
def __init__(self, model, mytokenizer):
|
||||||
|
global tokenizer
|
||||||
|
global local_model
|
||||||
|
local_model = model
|
||||||
|
tokenizer = mytokenizer
|
||||||
|
self.app = app
|
||||||
|
|
||||||
|
|
||||||
|
from .openai_protocol import (
|
||||||
|
ChatCompletionResponseStreamChoice,
|
||||||
|
ChatCompletionStreamResponse,
|
||||||
|
ChatCompletionResponseChoice,
|
||||||
|
ChatCompletionResponse,
|
||||||
|
ChatMessage,
|
||||||
|
DeltaMessage,
|
||||||
|
CompletionResponseChoice,
|
||||||
|
CompletionResponse,
|
||||||
|
CompletionResponseStreamChoice,
|
||||||
|
CompletionStreamResponse,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_queue_next_token(delta_text_queue):
|
||||||
|
timeout = int(os.getenv("IPEX_LLM_FASTAPI_TIMEOUT", 60))
|
||||||
|
delta_text = delta_text_queue.text_queue.get(timeout=timeout)
|
||||||
|
if delta_text is None:
|
||||||
|
remain = 0
|
||||||
|
else:
|
||||||
|
remain = 1
|
||||||
|
return delta_text, remain
|
||||||
|
|
||||||
|
async def chat_stream_generator(local_model, delta_text_queue, request_id):
|
||||||
|
model_name = local_model.model_name
|
||||||
|
index = 0
|
||||||
|
while True:
|
||||||
|
if not hasattr(delta_text_queue, 'empty'):
|
||||||
|
delta_text, remain = get_queue_next_token(delta_text_queue)
|
||||||
|
else:
|
||||||
|
if not delta_text_queue.empty():
|
||||||
|
with local_model.dict_lock:
|
||||||
|
remain, delta_text = await delta_text_queue.get()
|
||||||
|
else:
|
||||||
|
await asyncio.sleep(0)
|
||||||
|
continue
|
||||||
|
if remain == 0 and delta_text is not None or remain != 0:
|
||||||
|
choice_data = ChatCompletionResponseStreamChoice(
|
||||||
|
index=index,
|
||||||
|
delta=DeltaMessage(role="assistant", content=delta_text),
|
||||||
|
logprobs=None,
|
||||||
|
finish_reason=None)
|
||||||
|
chunk = ChatCompletionStreamResponse(
|
||||||
|
id=request_id,
|
||||||
|
choices=[choice_data],
|
||||||
|
model=model_name)
|
||||||
|
data = chunk.model_dump_json(exclude_unset=True)
|
||||||
|
yield f"data: {data}\n\n"
|
||||||
|
index = index + 1
|
||||||
|
if remain == 0:
|
||||||
|
choice_data = ChatCompletionResponseStreamChoice(
|
||||||
|
index=index,
|
||||||
|
delta=DeltaMessage(role="assistant", content=None),
|
||||||
|
logprobs=None,
|
||||||
|
finish_reason="length")
|
||||||
|
chunk = ChatCompletionStreamResponse(
|
||||||
|
id=request_id,
|
||||||
|
choices=[choice_data],
|
||||||
|
model=model_name)
|
||||||
|
data = chunk.model_dump_json(exclude_unset=True)
|
||||||
|
yield f"data: {data}\n\n"
|
||||||
|
break
|
||||||
|
local_model.streamer.pop(request_id, None)
|
||||||
|
|
||||||
|
|
||||||
|
async def completion_stream_generator(local_model, delta_text_queue, request_id):
|
||||||
|
model_name = local_model.model_name
|
||||||
|
index = 0
|
||||||
|
while True:
|
||||||
|
if not hasattr(delta_text_queue, 'empty'):
|
||||||
|
delta_text, remain = get_queue_next_token(delta_text_queue)
|
||||||
|
else:
|
||||||
|
if not delta_text_queue.empty():
|
||||||
|
with local_model.dict_lock:
|
||||||
|
remain, delta_text = await delta_text_queue.get()
|
||||||
|
else:
|
||||||
|
await asyncio.sleep(0)
|
||||||
|
continue
|
||||||
|
if remain == 0 and delta_text is not None or remain != 0:
|
||||||
|
choice_data = CompletionResponseStreamChoice(
|
||||||
|
index=index,
|
||||||
|
text=delta_text,
|
||||||
|
logprobs=None,
|
||||||
|
finish_reason=None)
|
||||||
|
chunk = CompletionStreamResponse(
|
||||||
|
id=request_id,
|
||||||
|
choices=[choice_data],
|
||||||
|
model=model_name)
|
||||||
|
data = chunk.model_dump_json(exclude_unset=True)
|
||||||
|
yield f"data: {data}\n\n"
|
||||||
|
index = index + 1
|
||||||
|
if remain == 0:
|
||||||
|
choice_data = CompletionResponseStreamChoice(
|
||||||
|
index=index,
|
||||||
|
text="",
|
||||||
|
logprobs=None,
|
||||||
|
finish_reason="length")
|
||||||
|
chunk = CompletionStreamResponse(
|
||||||
|
id=request_id,
|
||||||
|
choices=[choice_data],
|
||||||
|
model=model_name)
|
||||||
|
data = chunk.model_dump_json(exclude_unset=True)
|
||||||
|
yield f"data: {data}\n\n"
|
||||||
|
break
|
||||||
|
local_model.streamer.pop(request_id, None)
|
||||||
|
|
||||||
|
|
||||||
|
async def generator(local_model, delta_text_queue, request_id):
|
||||||
|
while True:
|
||||||
|
if not hasattr(delta_text_queue, 'empty'):
|
||||||
|
delta_text, remain = get_queue_next_token(delta_text_queue)
|
||||||
|
if delta_text is None:
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
yield delta_text
|
||||||
|
else:
|
||||||
|
if not delta_text_queue.empty():
|
||||||
|
with local_model.dict_lock:
|
||||||
|
remain, delta_text = await delta_text_queue.get()
|
||||||
|
yield delta_text
|
||||||
|
if remain == 0:
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
await asyncio.sleep(0)
|
||||||
|
continue
|
||||||
|
local_model.streamer.pop(request_id, None)
|
||||||
|
|
||||||
|
|
||||||
|
@app.post("/generate")
|
||||||
|
async def generate(prompt_request: PromptRequest):
|
||||||
|
request_id = str(uuid.uuid4())
|
||||||
|
await local_model.waiting_requests.put((request_id, prompt_request))
|
||||||
|
while True:
|
||||||
|
await asyncio.sleep(0)
|
||||||
|
cur_streamer = local_model.streamer.get(request_id, None)
|
||||||
|
if cur_streamer is not None:
|
||||||
|
output_str = []
|
||||||
|
async for item in generator(local_model, cur_streamer, request_id):
|
||||||
|
output_str.append(item)
|
||||||
|
return request_id, "".join(output_str)
|
||||||
|
|
||||||
|
|
||||||
|
@app.post("/generate_stream")
|
||||||
|
async def generate_stream_api(prompt_request: PromptRequest):
|
||||||
|
request_id, result = await generate_stream(prompt_request)
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
async def generate_stream(prompt_request: PromptRequest):
|
||||||
|
request_id = str(uuid.uuid4()) + "stream"
|
||||||
|
await local_model.waiting_requests.put((request_id, prompt_request))
|
||||||
|
while True:
|
||||||
|
await asyncio.sleep(0)
|
||||||
|
cur_streamer = local_model.streamer.get(request_id, None)
|
||||||
|
if cur_streamer is not None:
|
||||||
|
if prompt_request.req_type == 'completion':
|
||||||
|
cur_generator = completion_stream_generator(local_model, cur_streamer, request_id)
|
||||||
|
elif prompt_request.req_type == 'chat':
|
||||||
|
cur_generator = chat_stream_generator(local_model, cur_streamer, request_id)
|
||||||
|
else:
|
||||||
|
invalidInputError(False, "Invalid Request Type.")
|
||||||
|
|
||||||
|
return request_id, StreamingResponse(
|
||||||
|
content=cur_generator, media_type="text/event-stream"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_prompt(messages) -> str:
|
||||||
|
prompt = ""
|
||||||
|
for msg in messages:
|
||||||
|
role = msg["role"]
|
||||||
|
content = msg["content"]
|
||||||
|
if role == "system":
|
||||||
|
prompt += f"<<SYS>>\n{content}\n<</SYS>>\n\n"
|
||||||
|
elif role == "user":
|
||||||
|
prompt += f"[INST] {content} [/INST] "
|
||||||
|
elif role == "assistant":
|
||||||
|
prompt += f"{content} "
|
||||||
|
else:
|
||||||
|
invalidInputError(False, f"Unknown role: {role}")
|
||||||
|
return prompt.strip()
|
||||||
|
|
||||||
|
|
||||||
|
@app.post("/v1/chat/completions")
|
||||||
|
async def create_chat_completion(request: ChatCompletionRequest):
|
||||||
|
model_name = local_model.model_name
|
||||||
|
if request.max_tokens is None:
|
||||||
|
n_predict = 256
|
||||||
|
else:
|
||||||
|
n_predict = request.max_tokens
|
||||||
|
prompt_request = PromptRequest(
|
||||||
|
prompt=get_prompt(request.messages),
|
||||||
|
n_predict=n_predict,
|
||||||
|
req_type="chat"
|
||||||
|
)
|
||||||
|
if request.stream:
|
||||||
|
request_id, result = await generate_stream(prompt_request)
|
||||||
|
else:
|
||||||
|
request_id, result = await generate(prompt_request)
|
||||||
|
choice_data = ChatCompletionResponseChoice(
|
||||||
|
index=0,
|
||||||
|
message=ChatMessage(role="assistant", content=result),
|
||||||
|
logprobs=None,
|
||||||
|
finish_reason="length")
|
||||||
|
result = ChatCompletionResponse(
|
||||||
|
id=request_id,
|
||||||
|
choices=[choice_data],
|
||||||
|
model=model_name)
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
@app.post("/v1/completions")
|
||||||
|
async def create_completion(request: CompletionRequest):
|
||||||
|
model_name = local_model.model_name
|
||||||
|
if request.max_tokens is None:
|
||||||
|
n_predict = 256
|
||||||
|
else:
|
||||||
|
n_predict = request.max_tokens
|
||||||
|
prompt_request = PromptRequest(
|
||||||
|
prompt=request.prompt,
|
||||||
|
n_predict=n_predict,
|
||||||
|
req_type="completion"
|
||||||
|
)
|
||||||
|
if request.stream:
|
||||||
|
request_id, result = await generate_stream(prompt_request)
|
||||||
|
else:
|
||||||
|
request_id, result = await generate(prompt_request)
|
||||||
|
choice_data = CompletionResponseChoice(
|
||||||
|
index=0,
|
||||||
|
text=result,
|
||||||
|
logprobs=None,
|
||||||
|
finish_reason="length")
|
||||||
|
result = CompletionResponse(
|
||||||
|
id=request_id,
|
||||||
|
choices=[choice_data],
|
||||||
|
model=model_name)
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
@app.on_event("startup")
|
||||||
|
async def startup_event():
|
||||||
|
asyncio.create_task(process_requests(local_model, result_dict))
|
||||||
|
|
||||||
|
|
||||||
|
async def process_requests(local_model, result_dict):
|
||||||
|
while True:
|
||||||
|
await asyncio.sleep(0)
|
||||||
|
await local_model.process_step(tokenizer, result_dict)
|
||||||
82
python/llm/src/ipex_llm/serving/fastapi/model_worker.py
Normal file
82
python/llm/src/ipex_llm/serving/fastapi/model_worker.py
Normal file
|
|
@ -0,0 +1,82 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from transformers.utils import logging
|
||||||
|
import time
|
||||||
|
import asyncio
|
||||||
|
from transformers import TextIteratorStreamer
|
||||||
|
logger = logging.get_logger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class ModelWorker:
|
||||||
|
def __init__(self, checkpoint, low_bit, torch_dtype=torch.float16):
|
||||||
|
self.dtype = torch_dtype
|
||||||
|
start = time.perf_counter()
|
||||||
|
model = self.load_model(checkpoint, low_bit)
|
||||||
|
from ipex_llm.utils.benchmark_util import BenchmarkWrapper
|
||||||
|
self.model = BenchmarkWrapper(model, do_print=True)
|
||||||
|
end = time.perf_counter()
|
||||||
|
logger.info(f"Time to load weights: {end - start:.2f}s")
|
||||||
|
self.waiting_requests = asyncio.Queue()
|
||||||
|
self.streamer = {}
|
||||||
|
self.model_name = checkpoint
|
||||||
|
|
||||||
|
def load_model(self, model_path, low_bit='sym_int4'):
|
||||||
|
from ipex_llm.transformers import AutoModelForCausalLM, AutoModel
|
||||||
|
try:
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(model_path,
|
||||||
|
load_in_low_bit=low_bit,
|
||||||
|
torch_dtype=self.dtype,
|
||||||
|
optimize_model=True,
|
||||||
|
trust_remote_code=True,
|
||||||
|
use_cache=True,)
|
||||||
|
except:
|
||||||
|
model = AutoModel.from_pretrained(model_path,
|
||||||
|
load_in_low_bit=low_bit,
|
||||||
|
torch_dtype=self.dtype,
|
||||||
|
optimize_model=True,
|
||||||
|
trust_remote_code=True,
|
||||||
|
use_cache=True,)
|
||||||
|
model = model.eval().to("xpu")
|
||||||
|
return model
|
||||||
|
|
||||||
|
async def add_request(self, tokenizer):
|
||||||
|
if self.waiting_requests.empty():
|
||||||
|
return
|
||||||
|
tmp_result = await self.waiting_requests.get()
|
||||||
|
request_id, prompt_request = tmp_result
|
||||||
|
plain_texts = prompt_request.prompt
|
||||||
|
inputs = tokenizer(plain_texts, return_tensors="pt", padding=True)
|
||||||
|
input_ids = inputs.input_ids.to('xpu')
|
||||||
|
max_tokens = prompt_request.n_predict
|
||||||
|
return input_ids, max_tokens, request_id
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
async def process_step(self, tokenizer, result_dict):
|
||||||
|
if not self.waiting_requests.empty():
|
||||||
|
input_ids, max_tokens, request_id = await self.add_request(tokenizer)
|
||||||
|
self.streamer[request_id] = TextIteratorStreamer(tokenizer, skip_prompt=True)
|
||||||
|
|
||||||
|
def model_generate():
|
||||||
|
self.model.generate(input_ids,
|
||||||
|
streamer=self.streamer[request_id], max_new_tokens=max_tokens)
|
||||||
|
torch.xpu.empty_cache()
|
||||||
|
torch.xpu.synchronize()
|
||||||
|
|
||||||
|
from threading import Thread
|
||||||
|
t1 = Thread(target=model_generate)
|
||||||
|
t1.start()
|
||||||
|
|
@ -15,6 +15,7 @@
|
||||||
#
|
#
|
||||||
# Adapted from
|
# Adapted from
|
||||||
# https://github.com/lm-sys/FastChat/blob/168ccc29d3f7edc50823016105c024fe2282732a/fastchat/protocol/openai_api_protocol.py
|
# https://github.com/lm-sys/FastChat/blob/168ccc29d3f7edc50823016105c024fe2282732a/fastchat/protocol/openai_api_protocol.py
|
||||||
|
|
||||||
import time
|
import time
|
||||||
from typing import Dict, List, Literal, Optional, Union
|
from typing import Dict, List, Literal, Optional, Union
|
||||||
|
|
||||||
|
|
@ -22,11 +23,14 @@ import torch
|
||||||
from openai.types.chat import ChatCompletionMessageParam
|
from openai.types.chat import ChatCompletionMessageParam
|
||||||
from pydantic import BaseModel, ConfigDict, Field, model_validator
|
from pydantic import BaseModel, ConfigDict, Field, model_validator
|
||||||
from typing_extensions import Annotated
|
from typing_extensions import Annotated
|
||||||
|
from ipex_llm.utils.common import invalidInputError
|
||||||
|
|
||||||
|
|
||||||
# from vllm.sampling_params import SamplingParams
|
# from vllm.sampling_params import SamplingParams
|
||||||
def random_uuid() -> str:
|
def random_uuid() -> str:
|
||||||
return str(uuid.uuid4().hex)
|
return str(uuid.uuid4().hex)
|
||||||
|
|
||||||
|
|
||||||
class OpenAIBaseModel(BaseModel):
|
class OpenAIBaseModel(BaseModel):
|
||||||
# OpenAI API does not allow extra fields
|
# OpenAI API does not allow extra fields
|
||||||
model_config = ConfigDict(extra="forbid")
|
model_config = ConfigDict(extra="forbid")
|
||||||
|
|
@ -127,10 +131,10 @@ class ChatCompletionRequest(OpenAIBaseModel):
|
||||||
)
|
)
|
||||||
add_generation_prompt: Optional[bool] = Field(
|
add_generation_prompt: Optional[bool] = Field(
|
||||||
default=True,
|
default=True,
|
||||||
description=
|
description=(
|
||||||
("If true, the generation prompt will be added to the chat template. "
|
"If true, the generation prompt will be added to the chat template. "
|
||||||
"This is a parameter used by chat template in tokenizer config of the "
|
"This is a parameter used by chat template in tokenizer config of the "
|
||||||
"model."),
|
"model."),
|
||||||
)
|
)
|
||||||
include_stop_str_in_output: Optional[bool] = Field(
|
include_stop_str_in_output: Optional[bool] = Field(
|
||||||
default=False,
|
default=False,
|
||||||
|
|
@ -179,9 +183,9 @@ class ChatCompletionRequest(OpenAIBaseModel):
|
||||||
"guided_choice" in data and data["guided_choice"] is not None
|
"guided_choice" in data and data["guided_choice"] is not None
|
||||||
])
|
])
|
||||||
if guide_count > 1:
|
if guide_count > 1:
|
||||||
raise ValueError(
|
invalidInputError(False,
|
||||||
"You can only use one kind of guided decoding "
|
"You can only use one kind of guided decoding "
|
||||||
"('guided_json', 'guided_regex' or 'guided_choice').")
|
"('guided_json', 'guided_regex' or 'guided_choice').")
|
||||||
return data
|
return data
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -232,10 +236,10 @@ class CompletionRequest(OpenAIBaseModel):
|
||||||
)
|
)
|
||||||
response_format: Optional[ResponseFormat] = Field(
|
response_format: Optional[ResponseFormat] = Field(
|
||||||
default=None,
|
default=None,
|
||||||
description=
|
description=(
|
||||||
("Similar to chat completion, this parameter specifies the format of "
|
"Similar to chat completion, this parameter specifies the format of "
|
||||||
"output. Only {'type': 'json_object'} or {'type': 'text' } is "
|
"output. Only {'type': 'json_object'} or {'type': 'text' } is "
|
||||||
"supported."),
|
"supported."),
|
||||||
)
|
)
|
||||||
guided_json: Optional[Union[str, dict, BaseModel]] = Field(
|
guided_json: Optional[Union[str, dict, BaseModel]] = Field(
|
||||||
default=None,
|
default=None,
|
||||||
|
|
@ -279,9 +283,9 @@ class CompletionRequest(OpenAIBaseModel):
|
||||||
"guided_choice" in data and data["guided_choice"] is not None
|
"guided_choice" in data and data["guided_choice"] is not None
|
||||||
])
|
])
|
||||||
if guide_count > 1:
|
if guide_count > 1:
|
||||||
raise ValueError(
|
invalidInputError(False,
|
||||||
"You can only use one kind of guided decoding "
|
"You can only use one kind of guided decoding "
|
||||||
"('guided_json', 'guided_regex' or 'guided_choice').")
|
"('guided_json', 'guided_regex' or 'guided_choice').")
|
||||||
return data
|
return data
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -22,4 +22,4 @@ from .model import AutoModelForCausalLM, AutoModel, AutoModelForSeq2SeqLM, \
|
||||||
AutoModelForNextSentencePrediction, AutoModelForMultipleChoice, \
|
AutoModelForNextSentencePrediction, AutoModelForMultipleChoice, \
|
||||||
AutoModelForTokenClassification
|
AutoModelForTokenClassification
|
||||||
from .modelling_bigdl import *
|
from .modelling_bigdl import *
|
||||||
from .pipeline_parallel import init_pipeline_parallel, ModelRunner
|
from .pipeline_parallel import init_pipeline_parallel, PPModelWorker
|
||||||
|
|
|
||||||
|
|
@ -468,7 +468,7 @@ def make_attention_mask(prompt_lengths):
|
||||||
return attention_mask
|
return attention_mask
|
||||||
|
|
||||||
|
|
||||||
class ModelRunner:
|
class PPModelWorker:
|
||||||
"""Implementation for pipeline parallel multi-stage serving."""
|
"""Implementation for pipeline parallel multi-stage serving."""
|
||||||
def __init__(self, checkpoint, rank, world_size, low_bit, max_num_seqs, max_prefilled_seqs,
|
def __init__(self, checkpoint, rank, world_size, low_bit, max_num_seqs, max_prefilled_seqs,
|
||||||
torch_dtype=torch.float16):
|
torch_dtype=torch.float16):
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue