Update pipeline parallel serving for more model support (#11428)

This commit is contained in:
binbin Deng 2024-06-27 18:21:01 +08:00 committed by GitHub
parent 029ff15d28
commit 987017ef47
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
8 changed files with 389 additions and 398 deletions

View file

@ -32,6 +32,8 @@ pip install transformers==4.37.0
bash run.sh
```
> Note: INT4 optimization is applied to the model by default. You could specify other low bit optimizations (such as 'fp8' and 'fp6') through `--low-bit`. Besides, you could change `NUM_GPUS` to the number of GPUs you have on your machine.
### 3. Sample Input and Output

View file

@ -1,3 +1,19 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
import gradio as gr

View file

@ -1,3 +1,18 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Adapted from
# https://github.com/lm-sys/FastChat/blob/168ccc29d3f7edc50823016105c024fe2282732a/fastchat/protocol/openai_api_protocol.py
import time

View file

@ -1,382 +0,0 @@
import torch
import torch.distributed as dist
from typing import List, Optional, Tuple, Union, Iterator
import time
from transformers.cache_utils import Cache
from transformers.utils import logging
import numpy as np
import asyncio, uuid
import threading
from pydantic import BaseModel
logger = logging.get_logger(__name__)
class PPConfig:
"""Configuration for ModelSlices."""
def __init__(self, pp_rank: int, pp_world_size: int) -> None:
self.pp_rank = pp_rank
self.pp_world_size = pp_world_size
self.is_head = self.pp_rank == 0
self.is_tail = self.pp_rank == self.pp_world_size - 1
class BatchTask(BaseModel):
batch_id: str
request_ids: List[str]
max_tokens: int
batch_size: int
input_len: int
prompt_lengths: List[int]
stopped: bool
def make_attention_mask(prompt_lengths):
max_length = max(prompt_lengths)
attention_mask = torch.zeros((len(prompt_lengths), max_length), dtype=torch.int64)
for i, length in enumerate(prompt_lengths):
attention_mask[i, max_length - length:] = 1
return attention_mask
class ModelRunner:
def __init__(self, checkpoint, rank, world_size, low_bit, max_num_seqs):
self.pp_config = PPConfig(rank, world_size)
start = time.perf_counter()
model = self.load_model(checkpoint, rank, world_size, low_bit)
end = time.perf_counter()
logger.info(f"Time to load weights: {end - start:.2f}s")
self.model = model
self.rank = rank
self.world_size = world_size
self.pre_rank = (self.rank - 1) % self.world_size
self.next_rank = (self.rank + 1) % self.world_size
self.hidden_size = self.model.config.hidden_size
self.max_num_seqs = max_num_seqs
self.on_going_batches = [None] * self.world_size
self.input_ids_dict = {}
# self.attention_mask_dict = {}
self.past_key_values_dict = {}
self.tokens = {}
self.token_times = {}
self.dtype = torch.float16
self.waiting_requests = asyncio.Queue()
self.send_buff = None
self.dict_lock = threading.Lock()
self.streamer = {}
self.token_cache = {}
self.print_len = {}
self.is_finish = {}
self.model_name = checkpoint
self.layer_start = 0
def load_model(self, model_path, my_rank, my_size, low_bit='sym_int4'):
device = f"xpu:{my_rank}"
from ipex_llm.transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_low_bit=low_bit,
torch_dtype=torch.float16,
optimize_model=True,
trust_remote_code=True,
use_cache=True,
pipeline_parallel_stages=my_size).eval()
# print(model)
# config_class = type(model.config).__name__
# if config_class == 'ChatGLMConfig':
# model.config.num_hidden_layers = model.config.num_layers
# nr_slices = my_size
# slice_size = (model.config.num_layers + nr_slices - 1) // nr_slices
# layer_start = slice_size * my_rank
# layer_end = layer_start + min(slice_size, model.config.num_layers - layer_start)
# for i in range(model.config.num_layers):
# if i < layer_start or i >= layer_end:
# model.transformer.encoder.layers[i] = Dummy_DecoderLayer()
# else:
# pass
# # align layer_idx and len(past_key_values), otherwise abnormal output
# # model._modules['encoder'].layers[i].self_attention.layer_idx = i - layer_start
# # model.transformer.encoder.layers[i].self_attention.layer_idx = i - layer_start
# if my_rank != 0:
# model.transformer.embedding = DummyLayer()
# if my_rank != my_size - 1:
# model.transformer.output_layer = DummyLayer()
# else:
# nr_slices = my_size
# slice_size = (model.config.num_hidden_layers + nr_slices - 1) // nr_slices
# layer_start = slice_size * my_rank
# layer_end = layer_start + min(slice_size, model.config.num_hidden_layers - layer_start)
# for i in range(model.config.num_hidden_layers):
# if i < layer_start or i >= layer_end:
# model._modules['model'].layers[i] = Dummy_DecoderLayer()
# else:
# # align layer_idx and len(past_key_values), otherwise abnormal output
# model._modules['model'].layers[i].self_attn.layer_idx = i - layer_start
# if my_rank != 0:
# model._modules['model'].embed_tokens = DummyLayer()
# if my_rank != my_size - 1:
# model._modules['model'].norm = DummyLayer()
# model._modules['lm_head'] = DummyLayer()
# model = model.to(f'xpu:{my_rank}')
return model
def model_step(self, input, cur_batch):
if cur_batch is None or cur_batch.stopped or input is None:
return None
cur_id = cur_batch.batch_id
_past_key_values = self.past_key_values_dict.get(cur_id, None)
attention_mask = make_attention_mask(cur_batch.prompt_lengths)
if self.rank == 0:
input_ids = input
inputs_embeds = None
else:
input_ids = None
inputs_embeds = input
# logger.info(f"{self.rank}, {_past_key_values}")
output = self.model(
input_ids=input_ids,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
past_key_values=_past_key_values,
use_cache=True,
output_hidden_states=True,
)
use_legacy_cache = not isinstance(output.past_key_values, Cache)
if use_legacy_cache and self.rank > 0:
if output.past_key_values[0] is None:
_past_key_values = list(output.past_key_values)
slice_size = (self.model.config.num_hidden_layers + self.world_size - 1) // self.world_size
layer_start = slice_size * self.rank
_past_key_values[0] = [torch.empty_like(output.past_key_values[layer_start][0])]
_past_key_values = tuple(_past_key_values)
else:
_past_key_values = output.past_key_values
else:
_past_key_values = output.past_key_values
self.past_key_values_dict[cur_id] = _past_key_values
if not self.pp_config.is_tail:
return output.hidden_states[-1]
else:
return output.logits
def is_initialized(self):
return True
async def add_request(self, tokenizer):
request_ids, prompt_requests = [], []
for _ in range(self.max_num_seqs):
if self.waiting_requests.empty():
break
tmp_result = await self.waiting_requests.get()
request_id, prompt_request = tmp_result
request_ids.append(request_id)
prompt_requests.append(prompt_request)
plain_texts = [req.prompt for req in prompt_requests]
inputs = tokenizer(plain_texts, return_tensors="pt", padding=True)
input_ids = inputs.input_ids.to(f'xpu:{self.rank}')
attention_mask = inputs.attention_mask.to(f'xpu:{self.rank}')
new_batch = BatchTask(
batch_id="batch_" + str(uuid.uuid4()),
request_ids=request_ids,
max_tokens=max([req.n_predict for req in prompt_requests]),
batch_size=input_ids.size(0),
input_len=input_ids.size(1),
prompt_lengths=[sum(attention_mask[i,:]) for i in range(input_ids.size(0))],
stopped=False,
)
self.input_ids_dict[new_batch.batch_id] = input_ids
self.token_times[new_batch.batch_id] = [time.perf_counter()]
return new_batch
def clear_batch(self, cur_id):
self.input_ids_dict.pop(cur_id, None)
self.tokens.pop(cur_id, None)
self.token_times.pop(cur_id, None)
self.past_key_values_dict.pop(cur_id, None)
# torch.xpu.empty_cache()
async def process_step(self, tokenizer, result_dict):
cur_batch = None
if self.rank == 0:
if self.send_buff is not None:
# logger.info(f"rank: {self.rank}, send: {self.send_buff.shape}")
dist.send(self.send_buff, dst=self.next_rank)
if self.on_going_batches[0] is not None:
cur_batch = self.on_going_batches[0]
cur_input = None
if cur_batch is None:
if not self.waiting_requests.empty():
await asyncio.sleep(0.01)
cur_batch = await self.add_request(tokenizer)
cur_input = self.input_ids_dict[cur_batch.batch_id]
else:
cur_batch = None
cur_input = None
if (cur_batch is not None) and (not cur_batch.stopped) and (cur_input is None):
cur_id = cur_batch.batch_id
next_ids = torch.empty((cur_batch.batch_size, 1,), device=f'xpu:{self.rank}', dtype=torch.int64)
# logger.info(f"rank: {self.rank}, recv: {next_ids.shape}")
dist.recv(next_ids, src=self.pre_rank)
if self.tokens.get(cur_id, None) is None:
self.tokens[cur_id] = []
if len(next_ids.shape) == 1:
next_ids = next_ids.unsqueeze(0)
self.tokens[cur_id].append(next_ids)
self.token_times[cur_id].append(time.perf_counter())
cur_input = next_ids
cur_batch.input_len = 1
cur_batch.prompt_lengths = [x + 1 for x in cur_batch.prompt_lengths]
for index, request_id in enumerate(cur_batch.request_ids):
if not self.is_finish.get(request_id, False):
remain = cur_batch.max_tokens - len(self.tokens[cur_id])
if self.streamer.get(request_id, None) is None:
self.streamer[request_id] = asyncio.Queue()
# Currently ignore eos for benchmark
# if next_ids[index].int() == tokenizer.eos_token_id:
# remain = 0
# self.is_finish[request_id] = True
if self.token_cache.get(request_id, None) is None:
self.token_cache[request_id] = []
self.print_len[request_id] = 0
self.token_cache[request_id].extend(next_ids[index].tolist())
text = tokenizer.decode(self.token_cache[request_id])
if text.endswith("\n"):
printable_text = text[self.print_len[request_id]:]
self.token_cache[request_id] = []
self.print_len[request_id] = 0
elif len(text) > 0 and _is_chinese_char(ord(text[-1])):
printable_text = text[self.print_len[request_id]:]
self.print_len[request_id] += len(printable_text)
else:
printable_text = text[self.print_len[request_id] : text.rfind(" ") + 1]
self.print_len[request_id] += len(printable_text)
if remain > 0:
await self.streamer[request_id].put((remain, printable_text))
else:
printable_text = printable_text + text[self.print_len[request_id]:]
self.token_cache.pop(request_id, None)
self.print_len.pop(request_id, None)
await self.streamer[request_id].put((remain, printable_text))
if len(self.tokens[cur_id]) >= cur_batch.max_tokens:
# Finish a batch
# logger.info(self.tokens[cur_id])
outputs = torch.cat(self.tokens[cur_id], dim=1)
outputs = outputs.cpu()
output_strs = tokenizer.batch_decode(outputs, skip_special_tokens=False)
for request_id, output_str in zip(cur_batch.request_ids, output_strs):
with self.dict_lock:
result_dict[request_id] = output_str
cur_times = self.token_times[cur_id]
first_token = cur_times[1] - cur_times[0]
next_token = (cur_times[-1] - cur_times[1]) / (len(self.tokens[cur_id]) - 1)
logger.info(f"First token latency: {first_token}, next token latency: {next_token}")
self.clear_batch(cur_id)
cur_batch.stopped = True
else:
if (cur_batch is not None) and cur_batch.stopped:
cur_batch = None
if cur_batch is not None:
dist.broadcast_object_list([cur_batch], src=0)
else:
if self.send_buff is not None:
# logger.info(f"rank: {self.rank}, send: {self.send_buff.shape}")
dist.send(self.send_buff, dst=self.next_rank)
batch_list = [None]
dist.broadcast_object_list(batch_list, src=0)
cur_batch = batch_list[0]
cur_input = None
if cur_batch is not None:
if cur_batch.stopped:
self.clear_batch(cur_batch.batch_id)
else:
cur_len = cur_batch.input_len
cur_input = torch.empty((cur_batch.batch_size, cur_len, self.hidden_size,), device=f'xpu:{self.rank}', dtype=self.dtype)
# logger.info(f"rank: {self.rank}, recv: {cur_input.shape}")
dist.recv(cur_input, src=self.pre_rank)
output = self.model_step(cur_input, cur_batch)
if output is not None and self.rank == self.world_size - 1:
output = torch.argmax(output[:, -1:, :], dim=-1)
if output is not None:
# dist.send(output, dst=self.next_rank)
self.send_buff = output
else:
self.send_buff = None
if self.rank == 0:
self.on_going_batches[:-1] = self.on_going_batches[1:]
self.on_going_batches[self.world_size - 1] = cur_batch
def _is_chinese_char(cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4E00 and cp <= 0x9FFF)
or (cp >= 0x3400 and cp <= 0x4DBF) #
or (cp >= 0x20000 and cp <= 0x2A6DF) #
or (cp >= 0x2A700 and cp <= 0x2B73F) #
or (cp >= 0x2B740 and cp <= 0x2B81F) #
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
or (cp >= 0xF900 and cp <= 0xFAFF)
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
): #
return True
return False

View file

@ -1,10 +1,25 @@
from pipeline_models import ModelRunner
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch.nn.parallel
import torch.distributed as dist
import os
from ipex_llm.utils.common import invalidInputError
from ipex_llm.transformers import init_pipeline_parallel
from ipex_llm.transformers import init_pipeline_parallel, ModelRunner
import oneccl_bindings_for_pytorch
import json
@ -19,7 +34,7 @@ device = f"xpu:{my_rank}"
logger.info(f"rank: {my_rank}, size: {my_size}")
import time
from transformers import AutoTokenizer, AutoConfig, LlamaTokenizer
from transformers import AutoTokenizer
from fastapi import FastAPI, HTTPException, Request
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
@ -28,14 +43,6 @@ import asyncio, uuid
from typing import Dict, List, Optional, Any, Callable, Union
import argparse
def get_int_from_env(env_keys, default):
"""Returns the first positive env value found in the `env_keys` list or the default."""
for e in env_keys:
val = int(os.environ.get(e, -1))
if val >= 0:
return val
return int(default)
class PromptRequest(BaseModel):
prompt: str

View file

@ -1,4 +1,19 @@
source /opt/intel/oneapi/setvars.sh
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
export no_proxy=localhost
export FI_PROVIDER=tcp
export OMP_NUM_THREADS=32

View file

@ -22,4 +22,4 @@ from .model import AutoModelForCausalLM, AutoModel, AutoModelForSeq2SeqLM, \
AutoModelForNextSentencePrediction, AutoModelForMultipleChoice, \
AutoModelForTokenClassification
from .modelling_bigdl import *
from .pipeline_parallel import init_pipeline_parallel
from .pipeline_parallel import init_pipeline_parallel, ModelRunner

View file

@ -29,6 +29,10 @@ from transformers import GenerationConfig, LogitsProcessorList, StoppingCriteria
from ipex_llm.utils.common import invalidInputError
import logging
logger = logging.getLogger(__name__)
import asyncio
import uuid
import threading
from pydantic import BaseModel
# patch GenerationMixin.generate
from transformers import GenerationMixin
@ -307,3 +311,317 @@ def pipeline_parallel_generate(self,
torch.xpu.synchronize()
self.rest_cost_mean = np.mean(self.next_token_time)
return output_ids
class PPConfig:
"""Configuration for ModelSlices during serving."""
def __init__(self, pp_rank: int, pp_world_size: int) -> None:
self.pp_rank = pp_rank
self.pp_world_size = pp_world_size
self.is_head = self.pp_rank == 0
self.is_tail = self.pp_rank == self.pp_world_size - 1
class BatchTask(BaseModel):
batch_id: str
request_ids: List[str]
max_tokens: int
batch_size: int
input_len: int
prompt_lengths: List[int]
stopped: bool
def make_attention_mask(prompt_lengths):
max_length = max(prompt_lengths)
attention_mask = torch.zeros((len(prompt_lengths), max_length), dtype=torch.int64)
for i, length in enumerate(prompt_lengths):
attention_mask[i, max_length - length:] = 1
return attention_mask
class ModelRunner:
"""Implementation for pipeline parallel multi-stage serving."""
def __init__(self, checkpoint, rank, world_size, low_bit, max_num_seqs,
torch_dtype=torch.float16):
self.pp_config = PPConfig(rank, world_size)
self.dtype = torch_dtype
start = time.perf_counter()
model = self.load_model(checkpoint, world_size, low_bit)
end = time.perf_counter()
logger.info(f"Time to load weights: {end - start:.2f}s")
self.model = model
self.rank = rank
self.world_size = world_size
self.pre_rank = (self.rank - 1) % self.world_size
self.next_rank = (self.rank + 1) % self.world_size
self.hidden_size = self.model.config.hidden_size
self.max_num_seqs = max_num_seqs
self.on_going_batches = [None] * self.world_size
self.input_ids_dict = {}
self.past_key_values_dict = {}
self.tokens = {}
self.token_times = {}
self.waiting_requests = asyncio.Queue()
self.send_buff = None
self.dict_lock = threading.Lock()
self.streamer = {}
self.token_cache = {}
self.print_len = {}
self.is_finish = {}
self.model_name = checkpoint
self.layer_start = 0
def load_model(self, model_path, world_size, low_bit='sym_int4'):
from ipex_llm.transformers import AutoModelForCausalLM, AutoModel
try:
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_low_bit=low_bit,
torch_dtype=self.dtype,
optimize_model=True,
trust_remote_code=True,
use_cache=True,
pipeline_parallel_stages=world_size)
except:
model = AutoModel.from_pretrained(model_path,
load_in_low_bit=low_bit,
torch_dtype=self.dtype,
optimize_model=True,
trust_remote_code=True,
use_cache=True,
pipeline_parallel_stages=world_size)
model = model.eval()
return model
@torch.no_grad()
def model_step(self, input, cur_batch):
if cur_batch is None or cur_batch.stopped or input is None:
return None
cur_id = cur_batch.batch_id
_past_key_values = self.past_key_values_dict.get(cur_id, None)
attention_mask = make_attention_mask(cur_batch.prompt_lengths).to(input.device)
if self.rank == 0:
input_ids = input
inputs_embeds = None
else:
input_ids = None
inputs_embeds = input
torch.xpu.empty_cache()
output = self.model(input_ids=input_ids,
inputs_embeds=inputs_embeds,
past_key_values=_past_key_values,
attention_mask=attention_mask,
use_cache=True,)
if self.model.config.model_type in ["baichuan", "chatglm"] and self.rank > 0:
value_placeholder = torch.empty_like((output.past_key_values)[-1][0])
past_key_values_placeholder = tuple(
(value_placeholder, value_placeholder) for _ in range(layer_start)
) + (output.past_key_values)[layer_start:]
_past_key_values = past_key_values_placeholder
else:
_past_key_values = output.past_key_values
self.past_key_values_dict[cur_id] = _past_key_values
torch.xpu.synchronize()
if not self.pp_config.is_tail:
return output[0].to(self.dtype)
else:
return output.logits
def is_initialized(self):
return True
async def add_request(self, tokenizer):
request_ids, prompt_requests = [], []
for _ in range(self.max_num_seqs):
if self.waiting_requests.empty():
break
tmp_result = await self.waiting_requests.get()
request_id, prompt_request = tmp_result
request_ids.append(request_id)
prompt_requests.append(prompt_request)
plain_texts = [req.prompt for req in prompt_requests]
inputs = tokenizer(plain_texts, return_tensors="pt", padding=True)
input_ids = inputs.input_ids.to(f'xpu:{self.rank}')
attention_mask = inputs.attention_mask.to(f'xpu:{self.rank}')
new_batch = BatchTask(
batch_id="batch_" + str(uuid.uuid4()),
request_ids=request_ids,
max_tokens=max([req.n_predict for req in prompt_requests]),
batch_size=input_ids.size(0),
input_len=input_ids.size(1),
prompt_lengths=[sum(attention_mask[i, :]) for i in range(input_ids.size(0))],
stopped=False,
)
self.input_ids_dict[new_batch.batch_id] = input_ids
self.token_times[new_batch.batch_id] = [time.perf_counter()]
return new_batch
def clear_batch(self, cur_id):
self.input_ids_dict.pop(cur_id, None)
self.tokens.pop(cur_id, None)
self.token_times.pop(cur_id, None)
self.past_key_values_dict.pop(cur_id, None)
async def process_step(self, tokenizer, result_dict):
cur_batch = None
if self.rank == 0:
if self.send_buff is not None:
dist.send(self.send_buff, dst=self.next_rank)
if self.on_going_batches[0] is not None:
cur_batch = self.on_going_batches[0]
cur_input = None
if cur_batch is None:
if not self.waiting_requests.empty():
await asyncio.sleep(0.01)
cur_batch = await self.add_request(tokenizer)
cur_input = self.input_ids_dict[cur_batch.batch_id]
else:
cur_batch = None
cur_input = None
if (cur_batch is not None) and (not cur_batch.stopped) and (cur_input is None):
cur_id = cur_batch.batch_id
next_ids = torch.empty((cur_batch.batch_size, 1,), device=f'xpu:{self.rank}',
dtype=torch.int64)
dist.recv(next_ids, src=self.pre_rank)
if self.tokens.get(cur_id, None) is None:
self.tokens[cur_id] = []
if len(next_ids.shape) == 1:
next_ids = next_ids.unsqueeze(0)
self.tokens[cur_id].append(next_ids)
self.token_times[cur_id].append(time.perf_counter())
cur_input = next_ids
cur_batch.input_len = 1
cur_batch.prompt_lengths = [x + 1 for x in cur_batch.prompt_lengths]
for index, request_id in enumerate(cur_batch.request_ids):
if not self.is_finish.get(request_id, False):
remain = cur_batch.max_tokens - len(self.tokens[cur_id])
if self.streamer.get(request_id, None) is None:
self.streamer[request_id] = asyncio.Queue()
# Currently ignore eos for benchmark
# if next_ids[index].int() == tokenizer.eos_token_id:
# remain = 0
# self.is_finish[request_id] = True
if self.token_cache.get(request_id, None) is None:
self.token_cache[request_id] = []
self.print_len[request_id] = 0
self.token_cache[request_id].extend(next_ids[index].tolist())
text = tokenizer.decode(self.token_cache[request_id])
if text.endswith("\n"):
printable_text = text[self.print_len[request_id]:]
self.token_cache[request_id] = []
self.print_len[request_id] = 0
elif len(text) > 0 and _is_chinese_char(ord(text[-1])):
printable_text = text[self.print_len[request_id]:]
self.print_len[request_id] += len(printable_text)
else:
printable_text = text[self.print_len[request_id]: text.rfind(" ") + 1]
self.print_len[request_id] += len(printable_text)
if remain > 0:
await self.streamer[request_id].put((remain, printable_text))
else:
printable_text = printable_text + text[self.print_len[request_id]:]
self.token_cache.pop(request_id, None)
self.print_len.pop(request_id, None)
await self.streamer[request_id].put((remain, printable_text))
if len(self.tokens[cur_id]) >= cur_batch.max_tokens:
# Finish a batch
outputs = torch.cat(self.tokens[cur_id], dim=1)
outputs = outputs.cpu()
output_strs = tokenizer.batch_decode(outputs, skip_special_tokens=False)
for request_id, output_str in zip(cur_batch.request_ids, output_strs):
with self.dict_lock:
result_dict[request_id] = output_str
cur_times = self.token_times[cur_id]
first_token = cur_times[1] - cur_times[0]
next_token = (cur_times[-1] - cur_times[1]) / (len(self.tokens[cur_id]) - 1)
logger.info(f"First token latency: {first_token}, "
f"next token latency: {next_token}")
self.clear_batch(cur_id)
cur_batch.stopped = True
else:
if (cur_batch is not None) and cur_batch.stopped:
cur_batch = None
if cur_batch is not None:
dist.broadcast_object_list([cur_batch], src=0)
else:
if self.send_buff is not None:
dist.send(self.send_buff, dst=self.next_rank)
batch_list = [None]
dist.broadcast_object_list(batch_list, src=0)
cur_batch = batch_list[0]
cur_input = None
if cur_batch is not None:
if cur_batch.stopped:
self.clear_batch(cur_batch.batch_id)
else:
cur_len = cur_batch.input_len
cur_input = torch.empty((cur_batch.batch_size, cur_len, self.hidden_size,),
device=f'xpu:{self.rank}', dtype=self.dtype)
dist.recv(cur_input, src=self.pre_rank)
output = self.model_step(cur_input, cur_batch)
if output is not None and self.rank == self.world_size - 1:
output = torch.argmax(output[:, -1:, :], dim=-1)
if output is not None:
# dist.send(output, dst=self.next_rank)
self.send_buff = output
else:
self.send_buff = None
if self.rank == 0:
self.on_going_batches[:-1] = self.on_going_batches[1:]
self.on_going_batches[self.world_size - 1] = cur_batch
def _is_chinese_char(cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4E00 and cp <= 0x9FFF)
or (cp >= 0x3400 and cp <= 0x4DBF) #
or (cp >= 0x20000 and cp <= 0x2A6DF) #
or (cp >= 0x2A700 and cp <= 0x2B73F) #
or (cp >= 0x2B740 and cp <= 0x2B81F) #
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
or (cp >= 0xF900 and cp <= 0xFAFF)
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
): #
return True
return False