382 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			382 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import torch
 | 
						|
import torch.distributed as dist
 | 
						|
 | 
						|
from typing import List, Optional, Tuple, Union, Iterator
 | 
						|
import time
 | 
						|
from transformers.cache_utils import Cache
 | 
						|
from transformers.utils import logging
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import asyncio, uuid
 | 
						|
import threading
 | 
						|
from pydantic import BaseModel
 | 
						|
 | 
						|
logger = logging.get_logger(__name__)
 | 
						|
 | 
						|
 | 
						|
class PPConfig:
 | 
						|
    """Configuration for ModelSlices."""
 | 
						|
 | 
						|
    def __init__(self, pp_rank: int, pp_world_size: int) -> None:
 | 
						|
        self.pp_rank = pp_rank
 | 
						|
        self.pp_world_size = pp_world_size
 | 
						|
        self.is_head = self.pp_rank == 0
 | 
						|
        self.is_tail = self.pp_rank == self.pp_world_size - 1
 | 
						|
 | 
						|
 | 
						|
class BatchTask(BaseModel):
 | 
						|
    batch_id: str
 | 
						|
    request_ids: List[str]
 | 
						|
    max_tokens: int
 | 
						|
    batch_size: int
 | 
						|
    input_len: int
 | 
						|
    prompt_lengths: List[int]
 | 
						|
    stopped: bool
 | 
						|
 | 
						|
 | 
						|
def make_attention_mask(prompt_lengths):
 | 
						|
    max_length = max(prompt_lengths)
 | 
						|
    attention_mask = torch.zeros((len(prompt_lengths), max_length), dtype=torch.int64)
 | 
						|
    for i, length in enumerate(prompt_lengths):
 | 
						|
        attention_mask[i, max_length - length:] = 1
 | 
						|
    return attention_mask
 | 
						|
 | 
						|
class ModelRunner:
 | 
						|
    
 | 
						|
    def __init__(self, checkpoint, rank, world_size, low_bit, max_num_seqs):
 | 
						|
 | 
						|
        self.pp_config = PPConfig(rank, world_size)
 | 
						|
        
 | 
						|
        start = time.perf_counter()
 | 
						|
        model = self.load_model(checkpoint, rank, world_size, low_bit)
 | 
						|
        end = time.perf_counter()
 | 
						|
        logger.info(f"Time to load weights: {end - start:.2f}s")
 | 
						|
 | 
						|
        self.model = model
 | 
						|
        self.rank = rank
 | 
						|
        self.world_size = world_size
 | 
						|
        self.pre_rank = (self.rank - 1) % self.world_size
 | 
						|
        self.next_rank = (self.rank + 1) % self.world_size
 | 
						|
        self.hidden_size = self.model.config.hidden_size
 | 
						|
    
 | 
						|
        self.max_num_seqs = max_num_seqs
 | 
						|
        self.on_going_batches = [None] * self.world_size
 | 
						|
        self.input_ids_dict = {}
 | 
						|
        # self.attention_mask_dict = {}
 | 
						|
        self.past_key_values_dict = {}
 | 
						|
        self.tokens = {}
 | 
						|
        self.token_times = {}
 | 
						|
        self.dtype = torch.float16
 | 
						|
 | 
						|
        self.waiting_requests = asyncio.Queue()
 | 
						|
        self.send_buff = None
 | 
						|
        self.dict_lock = threading.Lock()
 | 
						|
 | 
						|
        self.streamer = {}
 | 
						|
        self.token_cache = {}
 | 
						|
        self.print_len = {}
 | 
						|
        self.is_finish = {}
 | 
						|
        self.model_name = checkpoint
 | 
						|
 | 
						|
        self.layer_start = 0
 | 
						|
 | 
						|
 | 
						|
    def load_model(self, model_path, my_rank, my_size, low_bit='sym_int4'):
 | 
						|
        device = f"xpu:{my_rank}"
 | 
						|
        from ipex_llm.transformers import AutoModelForCausalLM
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
						|
                                                    load_in_low_bit=low_bit,
 | 
						|
                                                    torch_dtype=torch.float16,
 | 
						|
                                                    optimize_model=True,
 | 
						|
                                                    trust_remote_code=True,
 | 
						|
                                                    use_cache=True,
 | 
						|
                                                    pipeline_parallel_stages=my_size).eval()
 | 
						|
        # print(model)
 | 
						|
 | 
						|
        # config_class = type(model.config).__name__
 | 
						|
        # if config_class == 'ChatGLMConfig':
 | 
						|
        #     model.config.num_hidden_layers = model.config.num_layers
 | 
						|
        #     nr_slices = my_size
 | 
						|
        #     slice_size = (model.config.num_layers + nr_slices - 1) // nr_slices
 | 
						|
        #     layer_start = slice_size * my_rank
 | 
						|
        #     layer_end  = layer_start + min(slice_size, model.config.num_layers - layer_start)
 | 
						|
 | 
						|
        #     for i in range(model.config.num_layers):
 | 
						|
        #         if i < layer_start or i >= layer_end:
 | 
						|
        #             model.transformer.encoder.layers[i] = Dummy_DecoderLayer()
 | 
						|
        #         else:
 | 
						|
        #             pass
 | 
						|
        #             # align layer_idx and len(past_key_values), otherwise abnormal output
 | 
						|
        #             # model._modules['encoder'].layers[i].self_attention.layer_idx = i - layer_start
 | 
						|
        #             # model.transformer.encoder.layers[i].self_attention.layer_idx = i - layer_start
 | 
						|
 | 
						|
        #         if my_rank != 0:
 | 
						|
        #             model.transformer.embedding = DummyLayer()
 | 
						|
        #         if my_rank != my_size - 1:
 | 
						|
        #             model.transformer.output_layer = DummyLayer()
 | 
						|
                    
 | 
						|
        # else:
 | 
						|
        #     nr_slices = my_size
 | 
						|
        #     slice_size = (model.config.num_hidden_layers + nr_slices - 1) // nr_slices
 | 
						|
        #     layer_start = slice_size * my_rank
 | 
						|
        #     layer_end  = layer_start + min(slice_size, model.config.num_hidden_layers - layer_start)
 | 
						|
 | 
						|
        #     for i in range(model.config.num_hidden_layers):
 | 
						|
        #         if i < layer_start or i >= layer_end:
 | 
						|
        #             model._modules['model'].layers[i] = Dummy_DecoderLayer()
 | 
						|
        #         else:
 | 
						|
        #             # align layer_idx and len(past_key_values), otherwise abnormal output
 | 
						|
        #             model._modules['model'].layers[i].self_attn.layer_idx = i - layer_start
 | 
						|
        #     if my_rank != 0:
 | 
						|
        #         model._modules['model'].embed_tokens = DummyLayer()
 | 
						|
        #     if my_rank != my_size - 1:
 | 
						|
        #         model._modules['model'].norm = DummyLayer()
 | 
						|
        #         model._modules['lm_head'] = DummyLayer()
 | 
						|
 | 
						|
        # model = model.to(f'xpu:{my_rank}')
 | 
						|
        return model
 | 
						|
 | 
						|
 | 
						|
    def model_step(self, input, cur_batch):
 | 
						|
        if cur_batch is None or cur_batch.stopped or input is None:
 | 
						|
            return None
 | 
						|
        
 | 
						|
        cur_id = cur_batch.batch_id
 | 
						|
        _past_key_values = self.past_key_values_dict.get(cur_id, None)
 | 
						|
        attention_mask = make_attention_mask(cur_batch.prompt_lengths)
 | 
						|
 | 
						|
        if self.rank == 0:
 | 
						|
            input_ids = input
 | 
						|
            inputs_embeds = None
 | 
						|
        else:
 | 
						|
            input_ids = None
 | 
						|
            inputs_embeds = input
 | 
						|
        
 | 
						|
        # logger.info(f"{self.rank}, {_past_key_values}")
 | 
						|
        output = self.model(
 | 
						|
            input_ids=input_ids, 
 | 
						|
            inputs_embeds=inputs_embeds,
 | 
						|
            attention_mask=attention_mask, 
 | 
						|
            past_key_values=_past_key_values,
 | 
						|
            use_cache=True,
 | 
						|
            output_hidden_states=True,
 | 
						|
        )
 | 
						|
        use_legacy_cache = not isinstance(output.past_key_values, Cache)
 | 
						|
        if use_legacy_cache and self.rank > 0:
 | 
						|
            if output.past_key_values[0] is None:
 | 
						|
                _past_key_values = list(output.past_key_values)
 | 
						|
                slice_size = (self.model.config.num_hidden_layers + self.world_size - 1) // self.world_size
 | 
						|
                layer_start = slice_size * self.rank
 | 
						|
 | 
						|
                _past_key_values[0] = [torch.empty_like(output.past_key_values[layer_start][0])]
 | 
						|
                _past_key_values = tuple(_past_key_values)
 | 
						|
            else:
 | 
						|
                _past_key_values = output.past_key_values
 | 
						|
        else:
 | 
						|
            _past_key_values = output.past_key_values
 | 
						|
        self.past_key_values_dict[cur_id] = _past_key_values
 | 
						|
        if not self.pp_config.is_tail:
 | 
						|
            return output.hidden_states[-1]
 | 
						|
        else:
 | 
						|
            return output.logits
 | 
						|
 | 
						|
    
 | 
						|
    def is_initialized(self):
 | 
						|
        return True
 | 
						|
    
 | 
						|
    
 | 
						|
    async def add_request(self, tokenizer):
 | 
						|
        request_ids, prompt_requests = [], []
 | 
						|
        for _ in range(self.max_num_seqs):
 | 
						|
            if self.waiting_requests.empty():
 | 
						|
                break
 | 
						|
            
 | 
						|
            tmp_result = await self.waiting_requests.get()
 | 
						|
            request_id, prompt_request = tmp_result
 | 
						|
            request_ids.append(request_id)
 | 
						|
            prompt_requests.append(prompt_request)
 | 
						|
 | 
						|
        plain_texts = [req.prompt for req in prompt_requests]
 | 
						|
        inputs = tokenizer(plain_texts, return_tensors="pt", padding=True)
 | 
						|
        input_ids = inputs.input_ids.to(f'xpu:{self.rank}')
 | 
						|
        attention_mask = inputs.attention_mask.to(f'xpu:{self.rank}')
 | 
						|
        new_batch = BatchTask(
 | 
						|
            batch_id="batch_" + str(uuid.uuid4()),
 | 
						|
            request_ids=request_ids,
 | 
						|
            max_tokens=max([req.n_predict for req in prompt_requests]),
 | 
						|
            batch_size=input_ids.size(0),
 | 
						|
            input_len=input_ids.size(1),
 | 
						|
            prompt_lengths=[sum(attention_mask[i,:]) for i in range(input_ids.size(0))],
 | 
						|
            stopped=False,
 | 
						|
        )
 | 
						|
 | 
						|
        self.input_ids_dict[new_batch.batch_id] = input_ids
 | 
						|
        self.token_times[new_batch.batch_id] = [time.perf_counter()]
 | 
						|
 | 
						|
        return new_batch
 | 
						|
 | 
						|
    
 | 
						|
    def clear_batch(self, cur_id):
 | 
						|
        self.input_ids_dict.pop(cur_id, None)
 | 
						|
        self.tokens.pop(cur_id, None)
 | 
						|
        self.token_times.pop(cur_id, None)
 | 
						|
        self.past_key_values_dict.pop(cur_id, None)
 | 
						|
        # torch.xpu.empty_cache()
 | 
						|
 | 
						|
 | 
						|
    async def process_step(self, tokenizer, result_dict):
 | 
						|
        cur_batch = None
 | 
						|
 | 
						|
        if self.rank == 0:
 | 
						|
            if self.send_buff is not None:
 | 
						|
                # logger.info(f"rank: {self.rank}, send: {self.send_buff.shape}")
 | 
						|
                dist.send(self.send_buff, dst=self.next_rank)
 | 
						|
 | 
						|
            if self.on_going_batches[0] is not None:
 | 
						|
                cur_batch = self.on_going_batches[0]
 | 
						|
                cur_input = None
 | 
						|
            
 | 
						|
            if cur_batch is None:
 | 
						|
                if not self.waiting_requests.empty():
 | 
						|
                    await asyncio.sleep(0.01)
 | 
						|
                    cur_batch = await self.add_request(tokenizer)
 | 
						|
                    cur_input = self.input_ids_dict[cur_batch.batch_id]
 | 
						|
                else:
 | 
						|
                    cur_batch = None
 | 
						|
                    cur_input = None
 | 
						|
 | 
						|
            if (cur_batch is not None) and (not cur_batch.stopped) and (cur_input is None):
 | 
						|
                cur_id = cur_batch.batch_id
 | 
						|
                next_ids = torch.empty((cur_batch.batch_size, 1,), device=f'xpu:{self.rank}', dtype=torch.int64)
 | 
						|
                # logger.info(f"rank: {self.rank}, recv: {next_ids.shape}")
 | 
						|
                dist.recv(next_ids, src=self.pre_rank)
 | 
						|
                
 | 
						|
                if self.tokens.get(cur_id, None) is None:
 | 
						|
                    self.tokens[cur_id] = []
 | 
						|
 | 
						|
                if len(next_ids.shape) == 1:
 | 
						|
                    next_ids = next_ids.unsqueeze(0)
 | 
						|
                self.tokens[cur_id].append(next_ids)
 | 
						|
                self.token_times[cur_id].append(time.perf_counter())
 | 
						|
                cur_input = next_ids
 | 
						|
                cur_batch.input_len = 1
 | 
						|
                cur_batch.prompt_lengths = [x + 1 for x in cur_batch.prompt_lengths]
 | 
						|
 | 
						|
                for index, request_id in enumerate(cur_batch.request_ids):
 | 
						|
 | 
						|
                    if not self.is_finish.get(request_id, False):
 | 
						|
                        remain = cur_batch.max_tokens - len(self.tokens[cur_id])
 | 
						|
                        
 | 
						|
                        if self.streamer.get(request_id, None) is None:
 | 
						|
                            self.streamer[request_id] = asyncio.Queue()
 | 
						|
                            
 | 
						|
                        # Currently ignore eos for benchmark
 | 
						|
                        # if next_ids[index].int() == tokenizer.eos_token_id:
 | 
						|
                        #     remain = 0
 | 
						|
                        #     self.is_finish[request_id] = True
 | 
						|
 | 
						|
                        if self.token_cache.get(request_id, None) is None:
 | 
						|
                            self.token_cache[request_id] = []
 | 
						|
                            self.print_len[request_id] = 0
 | 
						|
                        self.token_cache[request_id].extend(next_ids[index].tolist())
 | 
						|
 | 
						|
                        text = tokenizer.decode(self.token_cache[request_id])
 | 
						|
                        if text.endswith("\n"):
 | 
						|
                            printable_text = text[self.print_len[request_id]:]
 | 
						|
                            self.token_cache[request_id] = []
 | 
						|
                            self.print_len[request_id] = 0
 | 
						|
                        elif len(text) > 0 and _is_chinese_char(ord(text[-1])):
 | 
						|
                            printable_text = text[self.print_len[request_id]:]
 | 
						|
                            self.print_len[request_id] += len(printable_text)
 | 
						|
                        else:
 | 
						|
                            printable_text = text[self.print_len[request_id] : text.rfind(" ") + 1]
 | 
						|
                            self.print_len[request_id] += len(printable_text)
 | 
						|
 | 
						|
                        if remain > 0:
 | 
						|
                            await self.streamer[request_id].put((remain, printable_text))
 | 
						|
                        else:
 | 
						|
                            printable_text = printable_text + text[self.print_len[request_id]:]
 | 
						|
                            self.token_cache.pop(request_id, None)
 | 
						|
                            self.print_len.pop(request_id, None)
 | 
						|
                            await self.streamer[request_id].put((remain, printable_text))
 | 
						|
                
 | 
						|
                if len(self.tokens[cur_id]) >= cur_batch.max_tokens:
 | 
						|
                    # Finish a batch
 | 
						|
                    # logger.info(self.tokens[cur_id])
 | 
						|
                    outputs = torch.cat(self.tokens[cur_id], dim=1)
 | 
						|
                    outputs = outputs.cpu()
 | 
						|
                    output_strs = tokenizer.batch_decode(outputs, skip_special_tokens=False)
 | 
						|
                    for request_id, output_str in zip(cur_batch.request_ids, output_strs):
 | 
						|
                        with self.dict_lock:
 | 
						|
                            result_dict[request_id] = output_str
 | 
						|
 | 
						|
                    cur_times = self.token_times[cur_id]
 | 
						|
                    first_token = cur_times[1] - cur_times[0]
 | 
						|
                    next_token = (cur_times[-1] - cur_times[1]) / (len(self.tokens[cur_id]) - 1)
 | 
						|
                    logger.info(f"First token latency: {first_token}, next token latency: {next_token}")
 | 
						|
                    self.clear_batch(cur_id)
 | 
						|
                    cur_batch.stopped = True
 | 
						|
            else:
 | 
						|
                if (cur_batch is not None) and cur_batch.stopped:
 | 
						|
                    cur_batch = None
 | 
						|
 | 
						|
            if cur_batch is not None:
 | 
						|
                dist.broadcast_object_list([cur_batch], src=0)
 | 
						|
                
 | 
						|
        else:
 | 
						|
            if self.send_buff is not None:
 | 
						|
                # logger.info(f"rank: {self.rank}, send: {self.send_buff.shape}")
 | 
						|
                dist.send(self.send_buff, dst=self.next_rank)
 | 
						|
 | 
						|
            batch_list = [None]
 | 
						|
            dist.broadcast_object_list(batch_list, src=0)
 | 
						|
 | 
						|
            cur_batch = batch_list[0]
 | 
						|
            cur_input = None
 | 
						|
 | 
						|
            if cur_batch is not None:
 | 
						|
                if cur_batch.stopped:
 | 
						|
                    self.clear_batch(cur_batch.batch_id)
 | 
						|
                else:
 | 
						|
                    cur_len = cur_batch.input_len
 | 
						|
                    cur_input = torch.empty((cur_batch.batch_size, cur_len, self.hidden_size,), device=f'xpu:{self.rank}', dtype=self.dtype)
 | 
						|
                    # logger.info(f"rank: {self.rank}, recv: {cur_input.shape}")
 | 
						|
                    dist.recv(cur_input, src=self.pre_rank)
 | 
						|
        
 | 
						|
        output = self.model_step(cur_input, cur_batch)
 | 
						|
        if output is not None and self.rank == self.world_size - 1:
 | 
						|
            output = torch.argmax(output[:, -1:, :], dim=-1)
 | 
						|
 | 
						|
        if output is not None:
 | 
						|
            # dist.send(output, dst=self.next_rank)
 | 
						|
            self.send_buff = output
 | 
						|
        else:
 | 
						|
            self.send_buff = None
 | 
						|
        if self.rank == 0:
 | 
						|
            self.on_going_batches[:-1] = self.on_going_batches[1:]
 | 
						|
            self.on_going_batches[self.world_size - 1] = cur_batch
 | 
						|
 | 
						|
 | 
						|
def _is_chinese_char(cp):
 | 
						|
    """Checks whether CP is the codepoint of a CJK character."""
 | 
						|
    # This defines a "chinese character" as anything in the CJK Unicode block:
 | 
						|
    #   https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
 | 
						|
    #
 | 
						|
    # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
 | 
						|
    # despite its name. The modern Korean Hangul alphabet is a different block,
 | 
						|
    # as is Japanese Hiragana and Katakana. Those alphabets are used to write
 | 
						|
    # space-separated words, so they are not treated specially and handled
 | 
						|
    # like the all of the other languages.
 | 
						|
    if (
 | 
						|
        (cp >= 0x4E00 and cp <= 0x9FFF)
 | 
						|
        or (cp >= 0x3400 and cp <= 0x4DBF)  #
 | 
						|
        or (cp >= 0x20000 and cp <= 0x2A6DF)  #
 | 
						|
        or (cp >= 0x2A700 and cp <= 0x2B73F)  #
 | 
						|
        or (cp >= 0x2B740 and cp <= 0x2B81F)  #
 | 
						|
        or (cp >= 0x2B820 and cp <= 0x2CEAF)  #
 | 
						|
        or (cp >= 0xF900 and cp <= 0xFAFF)
 | 
						|
        or (cp >= 0x2F800 and cp <= 0x2FA1F)  #
 | 
						|
    ):  #
 | 
						|
        return True
 | 
						|
 | 
						|
    return False
 |