optimize rwkv v4 first token performance (#9912)
This commit is contained in:
parent
511cbcf773
commit
94767da7cf
2 changed files with 122 additions and 0 deletions
|
|
@ -924,4 +924,12 @@ def _optimize_post(model, lightweight_bmm=False):
|
|||
convert_forward(model,
|
||||
module.WhisperAttention,
|
||||
safe_bmm_fwd)
|
||||
elif model.config.model_type == "rwkv":
|
||||
# rwkv v4
|
||||
modeling_module_name = model.__class__.__module__
|
||||
module = importlib.import_module(modeling_module_name)
|
||||
from bigdl.llm.transformers.models.rwkv4 import rwkv_attention_forward
|
||||
convert_forward(model,
|
||||
module.RwkvSelfAttention,
|
||||
rwkv_attention_forward)
|
||||
return model
|
||||
|
|
|
|||
114
python/llm/src/bigdl/llm/transformers/models/rwkv4.py
Normal file
114
python/llm/src/bigdl/llm/transformers/models/rwkv4.py
Normal file
|
|
@ -0,0 +1,114 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
# Some parts of this file is adapted from
|
||||
# https://github.com/huggingface/transformers/blob/v4.36.0/src/transformers/models/rwkv/modeling_rwkv.py
|
||||
# which is licensed under Apache License 2.0:
|
||||
#
|
||||
# Copyright 2023 Bo Peng and HuggingFace Inc. team.
|
||||
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
|
||||
from typing import List
|
||||
|
||||
|
||||
def rwkv_linear_attention_xpu(
|
||||
time_decay: torch.Tensor,
|
||||
time_first: torch.Tensor,
|
||||
key: torch.Tensor,
|
||||
value: torch.Tensor,
|
||||
state: List[torch.Tensor]=None,
|
||||
return_state: bool=False
|
||||
):
|
||||
if state is None:
|
||||
num_state = torch.zeros(key.size(0), key.size(-1),
|
||||
dtype=key.dtype, device=key.device)
|
||||
den_state = torch.zeros(key.size(0), key.size(-1),
|
||||
dtype=key.dtype, device=key.device)
|
||||
max_state = torch.zeros(key.size(0), key.size(-1),
|
||||
dtype=key.dtype, device=key.device) - 1e38
|
||||
else:
|
||||
num_state, den_state, max_state = state
|
||||
num_state = num_state.contiguous()
|
||||
den_state = den_state.contiguous()
|
||||
max_state = max_state.contiguous()
|
||||
|
||||
time_decay = -torch.exp(time_decay)
|
||||
|
||||
import linear_q4_0
|
||||
output = linear_q4_0.rwkv_attention_with_state(
|
||||
time_decay,
|
||||
time_first,
|
||||
key,
|
||||
value,
|
||||
num_state,
|
||||
den_state,
|
||||
max_state,
|
||||
)
|
||||
|
||||
if return_state or state is not None:
|
||||
state = [num_state, den_state, max_state]
|
||||
|
||||
return output, state
|
||||
|
||||
|
||||
def rwkv_attention_forward(
|
||||
self,
|
||||
hidden: torch.Tensor,
|
||||
state: List[torch.Tensor]=None,
|
||||
use_cache=False,
|
||||
):
|
||||
receptance, key, value, state = self.extract_key_value(hidden, state=state)
|
||||
layer_state = tuple(s[:, :, self.layer_id] for s in state[2:]) if state is not None else None
|
||||
|
||||
if hidden.device.type == "xpu":
|
||||
rwkv, layer_state = rwkv_linear_attention_xpu(
|
||||
self.time_decay,
|
||||
self.time_first,
|
||||
key,
|
||||
value,
|
||||
state=layer_state,
|
||||
return_state=use_cache,
|
||||
)
|
||||
else:
|
||||
from transformers.models.rwkv.modeling_rwkv import rwkv_linear_attention_cpu
|
||||
rwkv, layer_state = rwkv_linear_attention_cpu(
|
||||
self.time_decay,
|
||||
self.time_first,
|
||||
key,
|
||||
value,
|
||||
state=layer_state,
|
||||
return_state=use_cache,
|
||||
)
|
||||
|
||||
if layer_state is not None:
|
||||
state[2][:, :, self.layer_id] = layer_state[0]
|
||||
state[3][:, :, self.layer_id] = layer_state[1]
|
||||
state[4][:, :, self.layer_id] = layer_state[2]
|
||||
|
||||
return self.output(receptance * rwkv), state
|
||||
Loading…
Reference in a new issue