LLM: add Ceval benchmark test. (#9872)

* init ceval benchmark test.

* upload dataset.

* add other tests.

* add qwen evaluator.

* fix qwen evaluator style.

* fix qwen evaluator style.

* update qwen evaluator.

* add llama evaluator.

* update eval

* fix typo.

* fix

* fix typo.

* fix llama evaluator.

* fix bug.

* fix style.

* delete dataset.

* fix style.

* fix style.

* add README.md and fix typo.

* fix comments.

* remove run scripts
This commit is contained in:
Cengguang Zhang 2024-01-16 19:14:26 +08:00 committed by GitHub
parent b909c5c9c2
commit 511cbcf773
6 changed files with 770 additions and 0 deletions

View file

@ -0,0 +1,32 @@
## C-Eval Benchmark Test
C-Eval benchmark test allows users to test on [C-Eval](https://cevalbenchmark.com) datasets, which is a multi-level multi-discipline chinese evaluation suite for foundation models. It consists of 13948 multi-choice questions spanning 52 diverse disciplines and four difficulty levels. Please check [paper](https://arxiv.org/abs/2305.08322) and [github repo](https://github.com/hkust-nlp/ceval) for more information.
### Download dataset
Please download and unzip the dataset for evaluation.
```shell
wget https://huggingface.co/datasets/ceval/ceval-exam/resolve/main/ceval-exam.zip
mkdir data
mv ceval-exam.zip data
cd data; unzip ceval-exam.zip
```
### Run
You can run evaluation with following command.
```shell
bash run.sh
```
+ `run.sh`
```shell
python eval.py \
--model_family llama \
--model_path "path to model" \
--eval_type validation \
--device xpu \
--eval_data_path data \
--qtype sym_int4
```
> **Note**
>
> `eval_type` there is two types of evaluation, first type is `validation`, which runs on validation dataset and output evaluation scores. The second type is `test`, which runs on test dataset and output `submission.json` file for submission on https://cevalbenchmark.com to get the evaluation score.

View file

@ -0,0 +1,310 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import argparse
import pandas as pd
import torch
import json
from tqdm import tqdm
from bigdl.llm.utils.common.log4Error import invalidInputError
from evaluators.qwen import QwenEvaluator
from evaluators.llama import LlamaEvaluator
TASK_NAME_MAPPING = {
"computer_network": ["Computer Network", "\u8ba1\u7b97\u673a\u7f51\u7edc", "STEM"],
"operating_system": ["Operating System", "\u64cd\u4f5c\u7cfb\u7edf", "STEM"],
"computer_architecture": [
"Computer Architecture",
"\u8ba1\u7b97\u673a\u7ec4\u6210",
"STEM",
],
"college_programming": ["College Programming", "\u5927\u5b66\u7f16\u7a0b", "STEM"],
"college_physics": ["College Physics", "\u5927\u5b66\u7269\u7406", "STEM"],
"college_chemistry": ["College Chemistry", "\u5927\u5b66\u5316\u5b66", "STEM"],
"advanced_mathematics": [
"Advanced Mathematics",
"\u9ad8\u7b49\u6570\u5b66",
"STEM",
],
"probability_and_statistics": [
"Probability and Statistics",
"\u6982\u7387\u7edf\u8ba1",
"STEM",
],
"discrete_mathematics": [
"Discrete Mathematics",
"\u79bb\u6563\u6570\u5b66",
"STEM",
],
"electrical_engineer": [
"Electrical Engineer",
"\u6ce8\u518c\u7535\u6c14\u5de5\u7a0b\u5e08",
"STEM",
],
"metrology_engineer": [
"Metrology Engineer",
"\u6ce8\u518c\u8ba1\u91cf\u5e08",
"STEM",
],
"high_school_mathematics": [
"High School Mathematics",
"\u9ad8\u4e2d\u6570\u5b66",
"STEM",
],
"high_school_physics": ["High School Physics", "\u9ad8\u4e2d\u7269\u7406", "STEM"],
"high_school_chemistry": [
"High School Chemistry",
"\u9ad8\u4e2d\u5316\u5b66",
"STEM",
],
"high_school_biology": ["High School Biology", "\u9ad8\u4e2d\u751f\u7269", "STEM"],
"middle_school_mathematics": [
"Middle School Mathematics",
"\u521d\u4e2d\u6570\u5b66",
"STEM",
],
"middle_school_biology": [
"Middle School Biology",
"\u521d\u4e2d\u751f\u7269",
"STEM",
],
"middle_school_physics": [
"Middle School Physics",
"\u521d\u4e2d\u7269\u7406",
"STEM",
],
"middle_school_chemistry": [
"Middle School Chemistry",
"\u521d\u4e2d\u5316\u5b66",
"STEM",
],
"veterinary_medicine": ["Veterinary Medicine", "\u517d\u533b\u5b66", "STEM"],
"college_economics": [
"College Economics",
"\u5927\u5b66\u7ecf\u6d4e\u5b66",
"Social Science",
],
"business_administration": [
"Business Administration",
"\u5de5\u5546\u7ba1\u7406",
"Social Science",
],
"marxism": [
"Marxism",
"\u9a6c\u514b\u601d\u4e3b\u4e49\u57fa\u672c\u539f\u7406",
"Social Science",
],
"mao_zedong_thought": [
"Mao Zedong Thought",
"\u6bdb\u6cfd\u4e1c\u601d\u60f3\u548c\u4e2d\u56fd\u7279\u8272\u793e\u4f1a\u4e3b\u4e49\u7406\u8bba\u4f53\u7cfb\u6982\u8bba",
"Social Science",
],
"education_science": ["Education Science", "\u6559\u80b2\u5b66", "Social Science"],
"teacher_qualification": [
"Teacher Qualification",
"\u6559\u5e08\u8d44\u683c",
"Social Science",
],
"high_school_politics": [
"High School Politics",
"\u9ad8\u4e2d\u653f\u6cbb",
"Social Science",
],
"high_school_geography": [
"High School Geography",
"\u9ad8\u4e2d\u5730\u7406",
"Social Science",
],
"middle_school_politics": [
"Middle School Politics",
"\u521d\u4e2d\u653f\u6cbb",
"Social Science",
],
"middle_school_geography": [
"Middle School Geography",
"\u521d\u4e2d\u5730\u7406",
"Social Science",
],
"modern_chinese_history": [
"Modern Chinese History",
"\u8fd1\u4ee3\u53f2\u7eb2\u8981",
"Humanities",
],
"ideological_and_moral_cultivation": [
"Ideological and Moral Cultivation",
"\u601d\u60f3\u9053\u5fb7\u4fee\u517b\u4e0e\u6cd5\u5f8b\u57fa\u7840",
"Humanities",
],
"logic": ["Logic", "\u903b\u8f91\u5b66", "Humanities"],
"law": ["Law", "\u6cd5\u5b66", "Humanities"],
"chinese_language_and_literature": [
"Chinese Language and Literature",
"\u4e2d\u56fd\u8bed\u8a00\u6587\u5b66",
"Humanities",
],
"art_studies": ["Art Studies", "\u827a\u672f\u5b66", "Humanities"],
"professional_tour_guide": [
"Professional Tour Guide",
"\u5bfc\u6e38\u8d44\u683c",
"Humanities",
],
"legal_professional": [
"Legal Professional",
"\u6cd5\u5f8b\u804c\u4e1a\u8d44\u683c",
"Humanities",
],
"high_school_chinese": [
"High School Chinese",
"\u9ad8\u4e2d\u8bed\u6587",
"Humanities",
],
"high_school_history": [
"High School History",
"\u9ad8\u4e2d\u5386\u53f2",
"Humanities",
],
"middle_school_history": [
"Middle School History",
"\u521d\u4e2d\u5386\u53f2",
"Humanities",
],
"civil_servant": ["Civil Servant", "\u516c\u52a1\u5458", "Other"],
"sports_science": ["Sports Science", "\u4f53\u80b2\u5b66", "Other"],
"plant_protection": ["Plant Protection", "\u690d\u7269\u4fdd\u62a4", "Other"],
"basic_medicine": ["Basic Medicine", "\u57fa\u7840\u533b\u5b66", "Other"],
"clinical_medicine": ["Clinical Medicine", "\u4e34\u5e8a\u533b\u5b66", "Other"],
"urban_and_rural_planner": [
"Urban and Rural Planner",
"\u6ce8\u518c\u57ce\u4e61\u89c4\u5212\u5e08",
"Other",
],
"accountant": ["Accountant", "\u6ce8\u518c\u4f1a\u8ba1\u5e08", "Other"],
"fire_engineer": [
"Fire Engineer",
"\u6ce8\u518c\u6d88\u9632\u5de5\u7a0b\u5e08",
"Other",
],
"environmental_impact_assessment_engineer": [
"Environmental Impact Assessment Engineer",
"\u73af\u5883\u5f71\u54cd\u8bc4\u4ef7\u5de5\u7a0b\u5e08",
"Other",
],
"tax_accountant": ["Tax Accountant", "\u7a0e\u52a1\u5e08", "Other"],
"physician": ["Physician", "\u533b\u5e08\u8d44\u683c", "Other"],
}
hard_list = [
"advanced_mathematics",
"discrete_mathematics",
"probability_and_statistics",
"college_physics",
"college_chemistry",
"high_school_mathematics",
"high_school_physics",
"high_school_chemistry",
]
choices = ["A", "B", "C", "D"]
def cal_ceval(res):
acc_sum_dict = dict()
acc_norm_sum_dict = dict()
cnt_dict = dict()
acc_sum = 0.0
cnt = 0
hard_cnt = 0
hard_acc_sum = 0.0
for tt in res.keys():
name = tt.split("-")[-1]
acc_sum += float(res[tt])
cnt += 1
class_ = TASK_NAME_MAPPING[name][2]
if class_ not in acc_sum_dict:
acc_sum_dict[class_] = 0.0
acc_norm_sum_dict[class_] = 0.0
cnt_dict[class_] = 0.0
if name in hard_list:
hard_cnt += 1
hard_acc_sum += float(res[tt])
acc_sum_dict[class_] += float(res[tt])
cnt_dict[class_] += 1
print("\n\n\n")
for k in ["STEM", "Social Science", "Humanities", "Other"]:
if k in cnt_dict:
print("%s acc: %.2f " % (k, acc_sum_dict[k] / cnt_dict[k]))
if hard_cnt > 0:
print("Hard acc:%.2f " % (hard_acc_sum / hard_cnt))
print("AVERAGE acc:%.2f " % (acc_sum / cnt))
def main(args, evaluator):
if args.eval_type == "validation":
result = {}
for subject_name in tqdm(TASK_NAME_MAPPING.keys()):
val_file_path = os.path.join(
args.eval_data_path, "val", f"{subject_name}_val.csv"
)
val_df = pd.read_csv(val_file_path)
score, _ = evaluator.eval_subject(subject_name, val_df, args.eval_type)
result[subject_name] = score
cal_ceval(result)
elif args.eval_type == "test":
all_answers = {}
for subject_name in tqdm(TASK_NAME_MAPPING.keys()):
test_file_path = os.path.join(
args.eval_data_path, "test", f"{subject_name}_test.csv"
)
test_df = pd.read_csv(test_file_path)
_, answers = evaluator.eval_subject(subject_name, test_df, args.eval_type)
all_answers[subject_name] = answers
json.dump(all_answers, open('submission.json','w'), ensure_ascii=False, indent=4)
else:
invalidInputError(False,
"Invalid eval_type, please use validation or test.")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_family", type=str, default="llama")
parser.add_argument("--model_path", type=str, default="meta-llama/Llama-2-7b-chat-hf")
parser.add_argument("--eval_type", type=str, default="validation")
parser.add_argument("--device", type=str, default="xpu")
parser.add_argument("--eval_data_path", type=str, default="data")
parser.add_argument("--qtype", type=str, default="sym_int4")
args = parser.parse_args()
if args.model_family == "llama":
evaluator = LlamaEvaluator(
choices=choices,
model_path=args.model_path,
device=args.device,
qtype=args.qtype
)
elif args.model_family == "qwen":
evaluator = QwenEvaluator(
choices=choices,
model_path=args.model_path,
device=args.device,
qtype=args.qtype
)
else:
invalidInputError(
False,
"Invalid model_family, currently support llama and qwen only.")
main(args, evaluator=evaluator)

View file

@ -0,0 +1,31 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
class Evaluator:
def __init__(self, choices, model_path, device, qtype):
self.choices = choices
self.model_path = model_path
self.device = device
self.qtype = qtype
def format_example(self, line, **kwargs):
pass
def eval_subject(self, subject_name, test_df, eval_type, **kwargs):
pass
def extract_answer(self, response, row, **kwargs):
pass

View file

@ -0,0 +1,236 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# refer to https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/blob/main/scripts/ceval/llama_evaluator.py
import re
import random
from tqdm import tqdm
import numpy as np
import torch
from transformers import LlamaTokenizer, GenerationConfig
from bigdl.llm.transformers import AutoModelForCausalLM
from evaluators.evaluator import Evaluator
DEFAULT_SYSTEM_PROMPT = """You are a helpful assistant. 你是一个乐于助人的助手。"""
class LlamaEvaluator(Evaluator):
def __init__(self, choices, model_path="meta-llama/Llama-2-7b-chat-hf", device="xpu", qtype="sym_int4"):
super(LlamaEvaluator, self).__init__(choices, model_path, device, qtype)
self.tokenizer = LlamaTokenizer.from_pretrained(
self.model_path,
trust_remote_code=True
)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_path,
load_in_low_bit=self.qtype,
optimize_model=True,
use_cache=True,
trust_remote_code=True
).eval().to(self.device)
self.generation_config = GenerationConfig(
temperature=0.2,
top_k=40,
top_p=0.9,
do_sample=True,
num_beams=1,
repetition_penalty=1.1,
max_new_tokens=20
)
self.sA_id = self.tokenizer.encode("A", add_special_tokens=False)[0]
self.sB_id = self.tokenizer.encode("B", add_special_tokens=False)[0]
self.sC_id = self.tokenizer.encode("C", add_special_tokens=False)[0]
self.sD_id = self.tokenizer.encode("D", add_special_tokens=False)[0]
self.A_id = self.tokenizer.encode("A")[-1]
self.B_id = self.tokenizer.encode("B")[-1]
self.C_id = self.tokenizer.encode("C")[-1]
self.D_id = self.tokenizer.encode("D")[-1]
@torch.no_grad()
def eval_subject(self, subject_name,
test_df,
eval_type="validation",
dev_df=None,
few_shot=False,
cot=False,
with_prompt=False,
constrained_decoding=False):
all_answers = {}
if constrained_decoding is True:
self.generation_config.output_scores = True
self.generation_config.return_dict_in_generate = True
self.generation_config.max_new_tokens = 1
self.generation_config.top_p = 1.0
self.generation_config.top_k = 0
correct_num = 0
if few_shot:
if with_prompt:
history = self.generate_alpaca2_few_shot_prompt(subject_name, dev_df, cot=cot)
else:
history = self.generate_llama2_few_shot_prompt(subject_name, dev_df, cot=cot)
else:
history = ''
answers = ['NA'] * len(test_df) if (eval_type=="test") is True else list(test_df['answer'])
for row_index, row in tqdm(test_df.iterrows(), total=len(test_df)):
question = self.format_example(row, include_answer=False, cot=cot,with_prompt=with_prompt)
instruction = question
if with_prompt:
prompt_template = (
"[INST] <<SYS>>\n"
"{system_prompt}\n"
"<</SYS>>\n\n"
"{instruction} [/INST]"
)
instruction = prompt_template.format_map({'instruction': instruction,'system_prompt':DEFAULT_SYSTEM_PROMPT})
instruction = history + instruction
inputs = self.tokenizer(instruction, return_tensors="pt")
generation_output = self.model.generate(
input_ids = inputs["input_ids"].to(self.device),
attention_mask = inputs['attention_mask'].to(self.device),
eos_token_id=self.tokenizer.eos_token_id,
pad_token_id=self.tokenizer.pad_token_id,
generation_config = self.generation_config
)
_ , length = inputs.input_ids.shape
if constrained_decoding is True:
logits = generation_output.scores[0][0]
logits = logits.float().cpu().detach()
choices1_logits = logits[[self.sA_id,self.sB_id,self.sC_id,self.sD_id]]
choices2_logits = logits[[self.A_id,self.B_id,self.C_id,self.D_id]]
choicesAll_logits = (choices1_logits + choices2_logits).numpy()
assert not (np.any(np.isinf(choicesAll_logits)) or np.any(np.isnan(choicesAll_logits)))
ans = {0: "A", 1: "B", 2: "C", 3: "D"}[np.argmax(choicesAll_logits)]
response = self.tokenizer.decode([logits.argmax(-1).item()])
else:
response = self.tokenizer.decode(generation_output[0, length:], skip_special_tokens=True)
ans, _ = self.extract_answer(response, row)
if ans == answers[row_index]:
correct_num += 1
all_answers[str(row_index)] = ans
correct_ratio = 100*correct_num/len(answers)
return correct_ratio, all_answers
def format_example(self, line, include_answer=True, cot=False, with_prompt=False):
example = line['question']
for choice in self.choices:
example += f'\n{choice}. {line[f"{choice}"]}'
if include_answer:
if cot:
example += "\n答案:让我们一步一步思考,\n" + \
line["explanation"] + f"\n所以答案是{line['answer']}\n\n"
else:
example += '\n答案:' + line["answer"] + '\n\n'
else:
if with_prompt is False:
if cot:
example += "\n答案:让我们一步一步思考,\n1."
else:
example += '\n答案:'
else:
if cot:
example += "\n答案是什么?让我们一步一步思考,\n1."
else:
example += '\n答案:'
return example
def generate_llama2_few_shot_prompt(self, subject, dev_df, cot=False):
prompt = f"以下是中国关于{subject}考试的单项选择题,请选出其中的正确答案。\n\n"
k = self.k
if self.k == -1:
k = dev_df.shape[0]
for i in range(k):
prompt += self.format_example(
dev_df.iloc[i, :],
include_answer=True,
cot=cot
)
return prompt
def generate_alpaca2_few_shot_prompt(self, subject, dev_df, cot=False):
prompt = f"以下是中国关于{subject}考试的单项选择题,请选出其中的正确答案。\n\n"
prompt_template = (
"[INST] <<SYS>>\n"
"{system_prompt}\n"
"<</SYS>>\n\n"
"{instruction} [/INST]好的,我会结合{subject}相关知识回答"
)
prompt = prompt_template.format_map({'instruction':prompt,'system_prompt':DEFAULT_SYSTEM_PROMPT,'subject':subject})
k = self.k
if self.k == -1:
k = dev_df.shape[0]
for i in range(k):
line = dev_df.iloc[i, :]
q=line['question']
for choice in self.choices:
q += f'\n{choice}. {line[f"{choice}"]}'
a = line['answer']
prompt += "[INST] "+q+"\n答案:[/INST]"+a+"\n"
return prompt
def extract_answer(self, response, row):
m = re.findall(r'所以答案是(.+?)。', response, re.M)
if len(m) > 0 and m[-1] in self.choices:
return m[-1], True
answer_patterns = [
r'([ABCD])是正确的',
r'选项([ABCD])正确',
r'答案为([ABCD])',
r'答案是([ABCD])',
r'答案([ABCD])',
r'选择([ABCD])',
r'答案:([ABCD])',
r'选择答案([ABCD])'
]
# RE extraction
for answer_pattern in answer_patterns:
m = re.search(answer_pattern, response, re.M)
if m:
answer = m.group(1)
return answer, False
# only containing one choice-character
m = re.findall(r'[ABCD]', response, re.M)
if len(m) >= 1:
answer = m[0]
return answer, False
# only containing one choice-context
choices_dict = {}
pattern = ""
for c in self.choices:
choices_dict[str(row[f'{c}'])] = c
pattern += re.escape(str(row[f'{c}']))+"|"
pattern = pattern[:-1]
m = re.findall(pattern, response, re.M)
print("w/ escape:",repr(pattern),response,(len(m)>=1))
if len(m) >= 1:
answer = choices_dict[m[0]]
return answer, False
return random.choice('ABCD'), False

View file

@ -0,0 +1,154 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# refer to https://github.com/QwenLM/Qwen/blob/main/eval/evaluate_chat_ceval.py
import re
from tqdm import tqdm
import torch
from thefuzz import process
from transformers import AutoTokenizer
from transformers.generation import GenerationConfig
from bigdl.llm.transformers import AutoModelForCausalLM
from evaluators.evaluator import Evaluator
class QwenEvaluator(Evaluator):
def __init__(self, choices, model_path="Qwen/Qwen-7B-Chat", device="xpu", qtype="sym_int4"):
super(QwenEvaluator, self).__init__(choices, model_path, device, qtype)
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_path,
trust_remote_code=True
)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_path,
load_in_low_bit=self.qtype,
optimize_model=True,
use_cache=True,
trust_remote_code=True
).eval().to(self.device)
self.model.generation_config = GenerationConfig.from_pretrained(
self.model_path,
trust_remote_code=True
)
self.model.generation_config.do_sample = False # use greedy decoding
self.model.generation_config.repetition_penalty = 1.0 # disable repetition penalty
def process_before_extraction(self, gen, question, choice_dict):
question_split = question.rstrip("").split("")[-1].split("_")
if len(question_split[0].strip()) > 4:
gen = gen.replace(question_split[0], "答案是")
if len(question_split[-1].strip()) > 4:
gen = gen.replace(question_split[-1], "")
for key, val in sorted(choice_dict.items(), key=lambda x: len(x[1]), reverse=True):
gen = gen.replace(val.rstrip(""), key)
return gen
def count_substr(self, gen, pattern):
return len(re.findall(pattern, gen))
def extract_choice(self, gen, prompt, choice_list):
res = re.search(
r"(?:(?:选|选择|选定)[:]?\s*|(?:(?:答案|选项)(?![^ABCD]{0,10}?(?:不|非)[^ABCD]{0,10}?(?:是|选|为||:|】))[^ABCD]{0,10}?(?:是|选|为||:|】))[^ABCD]{0,10}?)(A|B|C|D)(?:选项)?(?:\)|。|\.||,||、|A|B|C|D|$||:|\)|)",
gen,
)
if res is None:
res = re.search(
r"(A|B|C|D)(?:选?项)?(?![^ABCD]{0,4}?(?:不|非)[^ABCD]{0,4}?(?:正确|对[的,。:]|符合))[^ABCD]{0,4}?(?:正确|对[的,。:]|符合)",
gen,
)
if res is None:
res = re.search(r"^[\(]?(A|B|C|D)(?:。|\)||\.||,|||:|$)", gen)
if res is None:
res = re.search(r"(?<![a-zA-Z])(A|B|C|D)(?![a-zA-Z=])", gen)
if res is None:
return self.choices[choice_list.index(process.extractOne(gen, choice_list)[0])]
return res.group(1)
def format_example(self, line):
example = line["question"] + "\n\n"
for choice in self.choices:
example += f'{choice}. {line[f"{choice}"]}\n'
return example
def extract_answer(self, response, row):
prompt = row["question"]
gen = self.process_before_extraction(
response, prompt, {choice: row[choice] for choice in self.choices}
)
if not isinstance(prompt, str):
prompt = prompt[0]
pred = self.extract_choice(gen, prompt, [row[choice] for choice in self.choices])
return pred
@torch.no_grad()
def eval_subject(
self,
subject_name,
test_df,
eval_type="validation" # "test","validation"
):
if eval_type == "validation":
responses = []
result = []
score = []
for _, row in tqdm(test_df.iterrows(), total=len(test_df)):
question = self.format_example(row)
response, _ = self.model.chat(
self.tokenizer,
question,
history=None,
)
pred = self.extract_answer(response, row)
if "answer" in row:
correct = 1 if pred == row["answer"] else 0
score.append(correct)
responses.append(response)
result.append(pred)
if score:
correct_ratio = 100 * sum(score) / len(score)
else:
correct_ratio = 0
return correct_ratio, None
elif eval_type == "test":
answers = {}
for i, row in tqdm(test_df.iterrows(), total=len(test_df)):
question = self.format_example(row)
response, _ = self.model.chat(
self.tokenizer,
question,
history=None,
)
pred = self.extract_answer(response, row)
answers[str(i)] = pred
return None, answers

View file

@ -0,0 +1,7 @@
python eval.py \
--model_family llama \
--model_path "path to model" \
--eval_type validation \
--device xpu \
--eval_data_path data \
--qtype sym_int4