optimize rwkv v4 first token performance (#9912)
This commit is contained in:
parent
511cbcf773
commit
94767da7cf
2 changed files with 122 additions and 0 deletions
|
|
@ -924,4 +924,12 @@ def _optimize_post(model, lightweight_bmm=False):
|
||||||
convert_forward(model,
|
convert_forward(model,
|
||||||
module.WhisperAttention,
|
module.WhisperAttention,
|
||||||
safe_bmm_fwd)
|
safe_bmm_fwd)
|
||||||
|
elif model.config.model_type == "rwkv":
|
||||||
|
# rwkv v4
|
||||||
|
modeling_module_name = model.__class__.__module__
|
||||||
|
module = importlib.import_module(modeling_module_name)
|
||||||
|
from bigdl.llm.transformers.models.rwkv4 import rwkv_attention_forward
|
||||||
|
convert_forward(model,
|
||||||
|
module.RwkvSelfAttention,
|
||||||
|
rwkv_attention_forward)
|
||||||
return model
|
return model
|
||||||
|
|
|
||||||
114
python/llm/src/bigdl/llm/transformers/models/rwkv4.py
Normal file
114
python/llm/src/bigdl/llm/transformers/models/rwkv4.py
Normal file
|
|
@ -0,0 +1,114 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
# Some parts of this file is adapted from
|
||||||
|
# https://github.com/huggingface/transformers/blob/v4.36.0/src/transformers/models/rwkv/modeling_rwkv.py
|
||||||
|
# which is licensed under Apache License 2.0:
|
||||||
|
#
|
||||||
|
# Copyright 2023 Bo Peng and HuggingFace Inc. team.
|
||||||
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
|
||||||
|
def rwkv_linear_attention_xpu(
|
||||||
|
time_decay: torch.Tensor,
|
||||||
|
time_first: torch.Tensor,
|
||||||
|
key: torch.Tensor,
|
||||||
|
value: torch.Tensor,
|
||||||
|
state: List[torch.Tensor]=None,
|
||||||
|
return_state: bool=False
|
||||||
|
):
|
||||||
|
if state is None:
|
||||||
|
num_state = torch.zeros(key.size(0), key.size(-1),
|
||||||
|
dtype=key.dtype, device=key.device)
|
||||||
|
den_state = torch.zeros(key.size(0), key.size(-1),
|
||||||
|
dtype=key.dtype, device=key.device)
|
||||||
|
max_state = torch.zeros(key.size(0), key.size(-1),
|
||||||
|
dtype=key.dtype, device=key.device) - 1e38
|
||||||
|
else:
|
||||||
|
num_state, den_state, max_state = state
|
||||||
|
num_state = num_state.contiguous()
|
||||||
|
den_state = den_state.contiguous()
|
||||||
|
max_state = max_state.contiguous()
|
||||||
|
|
||||||
|
time_decay = -torch.exp(time_decay)
|
||||||
|
|
||||||
|
import linear_q4_0
|
||||||
|
output = linear_q4_0.rwkv_attention_with_state(
|
||||||
|
time_decay,
|
||||||
|
time_first,
|
||||||
|
key,
|
||||||
|
value,
|
||||||
|
num_state,
|
||||||
|
den_state,
|
||||||
|
max_state,
|
||||||
|
)
|
||||||
|
|
||||||
|
if return_state or state is not None:
|
||||||
|
state = [num_state, den_state, max_state]
|
||||||
|
|
||||||
|
return output, state
|
||||||
|
|
||||||
|
|
||||||
|
def rwkv_attention_forward(
|
||||||
|
self,
|
||||||
|
hidden: torch.Tensor,
|
||||||
|
state: List[torch.Tensor]=None,
|
||||||
|
use_cache=False,
|
||||||
|
):
|
||||||
|
receptance, key, value, state = self.extract_key_value(hidden, state=state)
|
||||||
|
layer_state = tuple(s[:, :, self.layer_id] for s in state[2:]) if state is not None else None
|
||||||
|
|
||||||
|
if hidden.device.type == "xpu":
|
||||||
|
rwkv, layer_state = rwkv_linear_attention_xpu(
|
||||||
|
self.time_decay,
|
||||||
|
self.time_first,
|
||||||
|
key,
|
||||||
|
value,
|
||||||
|
state=layer_state,
|
||||||
|
return_state=use_cache,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
from transformers.models.rwkv.modeling_rwkv import rwkv_linear_attention_cpu
|
||||||
|
rwkv, layer_state = rwkv_linear_attention_cpu(
|
||||||
|
self.time_decay,
|
||||||
|
self.time_first,
|
||||||
|
key,
|
||||||
|
value,
|
||||||
|
state=layer_state,
|
||||||
|
return_state=use_cache,
|
||||||
|
)
|
||||||
|
|
||||||
|
if layer_state is not None:
|
||||||
|
state[2][:, :, self.layer_id] = layer_state[0]
|
||||||
|
state[3][:, :, self.layer_id] = layer_state[1]
|
||||||
|
state[4][:, :, self.layer_id] = layer_state[2]
|
||||||
|
|
||||||
|
return self.output(receptance * rwkv), state
|
||||||
Loading…
Reference in a new issue