add CodeShell CPU example (#9345)
* add CodeShell CPU example * fix some problems
This commit is contained in:
		
							parent
							
								
									11a05641a4
								
							
						
					
					
						commit
						9377b9c5d7
					
				
					 6 changed files with 281 additions and 0 deletions
				
			
		| 
						 | 
					@ -161,6 +161,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
 | 
				
			||||||
| Skywork      | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/skywork)                 |    |
 | 
					| Skywork      | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/skywork)                 |    |
 | 
				
			||||||
| InternLM-XComposer  | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/internlm-xcomposer)   |    |
 | 
					| InternLM-XComposer  | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/internlm-xcomposer)   |    |
 | 
				
			||||||
| WizardCoder-Python | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/wizardcoder-python) | |
 | 
					| WizardCoder-Python | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/wizardcoder-python) | |
 | 
				
			||||||
 | 
					| CodeShell | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/CodeShell) | |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
***For more details, please refer to the `bigdl-llm` [Document](https://test-bigdl-llm.readthedocs.io/en/main/doc/LLM/index.html), [Readme](python/llm), [Tutorial](https://github.com/intel-analytics/bigdl-llm-tutorial) and [API Doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/LLM/index.html).***
 | 
					***For more details, please refer to the `bigdl-llm` [Document](https://test-bigdl-llm.readthedocs.io/en/main/doc/LLM/index.html), [Readme](python/llm), [Tutorial](https://github.com/intel-analytics/bigdl-llm-tutorial) and [API Doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/LLM/index.html).***
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -68,6 +68,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
 | 
				
			||||||
| Skywork    | [link](example/CPU/HF-Transformers-AutoModels/Model/skywork)                 |    |
 | 
					| Skywork    | [link](example/CPU/HF-Transformers-AutoModels/Model/skywork)                 |    |
 | 
				
			||||||
| InternLM-XComposer    | [link](example/CPU/HF-Transformers-AutoModels/Model/internlm-xcomposer)   |   |
 | 
					| InternLM-XComposer    | [link](example/CPU/HF-Transformers-AutoModels/Model/internlm-xcomposer)   |   |
 | 
				
			||||||
| WizardCoder-Python | [link](example/CPU/HF-Transformers-AutoModels/Model/wizardcoder-python) | |
 | 
					| WizardCoder-Python | [link](example/CPU/HF-Transformers-AutoModels/Model/wizardcoder-python) | |
 | 
				
			||||||
 | 
					| CodeShell | [link](example/CPU/HF-Transformers-AutoModels/Model/CodeShell) | |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### Working with `bigdl-llm`
 | 
					### Working with `bigdl-llm`
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,79 @@
 | 
				
			||||||
 | 
					# CodeShell-7B
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on CodeShell models. For illustration purposes, we utilize the [WisdomShell/CodeShell-7B](https://huggingface.co/WisdomShell/CodeShell-7B) as a reference CodeShell model.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> **Note**: If you want to download the Hugging Face *Transformers* model, please refer to [here](https://huggingface.co/docs/hub/models-downloading#using-git).
 | 
				
			||||||
 | 
					>
 | 
				
			||||||
 | 
					> BigDL-LLM optimizes the *Transformers* model in INT4 precision at runtime, and thus no explicit conversion is needed.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Requirements
 | 
				
			||||||
 | 
					To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Example: Predict Tokens using `generate()` API
 | 
				
			||||||
 | 
					In the example [generate.py](./generate.py), we show a basic use case for a CodeShell model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
 | 
				
			||||||
 | 
					### 1. Install
 | 
				
			||||||
 | 
					We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					After installing conda, create a Python environment for BigDL-LLM:
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					conda create -n llm python=3.9 # recommend to use Python 3.9
 | 
				
			||||||
 | 
					conda activate llm
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### 2. Run
 | 
				
			||||||
 | 
					After setting up the Python environment, you could run the example by following steps.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
 | 
				
			||||||
 | 
					>
 | 
				
			||||||
 | 
					> Please select the appropriate size of the CodeShell model based on the capabilities of your machine.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 2.1 Client
 | 
				
			||||||
 | 
					On client Windows machines, it is recommended to run directly with full utilization of all cores:
 | 
				
			||||||
 | 
					```powershell
 | 
				
			||||||
 | 
					python ./generate.py --prompt 'def print_hello_world():'
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 2.2 Server
 | 
				
			||||||
 | 
					For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					E.g. on Linux,
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					# set BigDL-Nano env variables
 | 
				
			||||||
 | 
					source bigdl-nano-init
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# e.g. for a server with 48 cores per socket
 | 
				
			||||||
 | 
					export OMP_NUM_THREADS=48
 | 
				
			||||||
 | 
					numactl -C 0-47 -m 0 python ./generate.py --prompt 'def print_hello_world():'
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 2.3 Arguments Info
 | 
				
			||||||
 | 
					In the example, several arguments can be passed to satisfy your requirements:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					- `--repo-id-or-model-path`: str, argument defining the huggingface repo id for the CodeShell model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'WisdomShell/CodeShell-7B'`.
 | 
				
			||||||
 | 
					- `--prompt`: str, argument defining the prompt to be inferred (with integrated prompt format for code). It is default to be `def print_hello_world():`.
 | 
				
			||||||
 | 
					- `--n-predict`: int, argument defining the max number of tokens to predict. It is default to be `50`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 2.4 Sample Output
 | 
				
			||||||
 | 
					#### [WisdomShell/CodeShell-7B ](https://huggingface.co/WisdomShell/CodeShell-7B )
 | 
				
			||||||
 | 
					```log
 | 
				
			||||||
 | 
					Inference time: xxxx s
 | 
				
			||||||
 | 
					-------------------- Prompt --------------------
 | 
				
			||||||
 | 
					def print_hello_world():
 | 
				
			||||||
 | 
					-------------------- Output --------------------
 | 
				
			||||||
 | 
					def print_hello_world():
 | 
				
			||||||
 | 
					    print("Hello World")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					print_hello_world()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Function with parameters
 | 
				
			||||||
 | 
					def print_hello_name(name):
 | 
				
			||||||
 | 
					    print("Hello " + name)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					print_hello_name("John")
 | 
				
			||||||
 | 
					print
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,69 @@
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Copyright 2016 The BigDL Authors.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import torch
 | 
				
			||||||
 | 
					import time
 | 
				
			||||||
 | 
					import argparse
 | 
				
			||||||
 | 
					import numpy as np
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from bigdl.llm.transformers import AutoModelForCausalLM
 | 
				
			||||||
 | 
					from transformers import AutoTokenizer
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# you could tune the prompt based on your own model,
 | 
				
			||||||
 | 
					# here the prompt tuning refers to: https://huggingface.co/WisdomShell/CodeShell-7B
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == '__main__':
 | 
				
			||||||
 | 
					    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for CodeShell model')
 | 
				
			||||||
 | 
					    parser.add_argument('--repo-id-or-model-path', type=str, default="WisdomShell/CodeShell-7B",
 | 
				
			||||||
 | 
					                        help='The huggingface repo id for the CodeShell model to be downloaded'
 | 
				
			||||||
 | 
					                             ', or the path to the huggingface checkpoint folder')
 | 
				
			||||||
 | 
					    parser.add_argument('--prompt', type=str, default="def print_hello_world():",
 | 
				
			||||||
 | 
					                        help='Prompt to infer')
 | 
				
			||||||
 | 
					    parser.add_argument('--n-predict', type=int, default=50,
 | 
				
			||||||
 | 
					                        help='Max tokens to predict')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    args = parser.parse_args()
 | 
				
			||||||
 | 
					    model_path = args.repo_id_or_model_path
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Load model in 4 bit,
 | 
				
			||||||
 | 
					    # which convert the relevant layers in the model into INT4 format
 | 
				
			||||||
 | 
					    model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
				
			||||||
 | 
					                                                 load_in_4bit=True,
 | 
				
			||||||
 | 
					                                                 trust_remote_code=True)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Load tokenizer
 | 
				
			||||||
 | 
					    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
				
			||||||
 | 
					                                              trust_remote_code=True)
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    # Generate predicted tokens
 | 
				
			||||||
 | 
					    with torch.inference_mode():
 | 
				
			||||||
 | 
					        prompt = args.prompt
 | 
				
			||||||
 | 
					        input_ids = tokenizer.encode(prompt, return_tensors="pt")
 | 
				
			||||||
 | 
					        st = time.time()
 | 
				
			||||||
 | 
					        # if your selected model is capable of utilizing previous key/value attentions
 | 
				
			||||||
 | 
					        # to enhance decoding speed, but has `"use_cache": false` in its model config,
 | 
				
			||||||
 | 
					        # it is important to set `use_cache=True` explicitly in the `generate` function
 | 
				
			||||||
 | 
					        # to obtain optimal performance with BigDL-LLM INT4 optimizations
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        output = model.generate(input_ids, max_new_tokens=args.n_predict)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        end = time.time()
 | 
				
			||||||
 | 
					        output_str = tokenizer.decode(output[0], skip_special_tokens=True)
 | 
				
			||||||
 | 
					        print(f'Inference time: {end-st} s')
 | 
				
			||||||
 | 
					        print('-'*20, 'Prompt', '-'*20)
 | 
				
			||||||
 | 
					        print(prompt)
 | 
				
			||||||
 | 
					        print('-'*20, 'Output', '-'*20)
 | 
				
			||||||
 | 
					        print(output_str)
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,70 @@
 | 
				
			||||||
 | 
					# CodeShell
 | 
				
			||||||
 | 
					In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate CodeShell models. For illustration purposes, we utilize the [WisdomShell/CodeShell-7B](https://huggingface.co/WisdomShell/CodeShell-7B ) as a reference CodeShell model.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Requirements
 | 
				
			||||||
 | 
					To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Example: Predict Tokens using `generate()` API
 | 
				
			||||||
 | 
					In the example [generate.py](./generate.py), we show a basic use case for a CodeShell model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
 | 
				
			||||||
 | 
					### 1. Install
 | 
				
			||||||
 | 
					We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					After installing conda, create a Python environment for BigDL-LLM:
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					conda create -n llm python=3.9 # recommend to use Python 3.9
 | 
				
			||||||
 | 
					conda activate llm
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### 2. Run
 | 
				
			||||||
 | 
					After setting up the Python environment, you could run the example by following steps.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 2.1 Client
 | 
				
			||||||
 | 
					On client Windows machines, it is recommended to run directly with full utilization of all cores:
 | 
				
			||||||
 | 
					```powershell
 | 
				
			||||||
 | 
					python ./generate.py --prompt 'def print_hello_world():'
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 2.2 Server
 | 
				
			||||||
 | 
					For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					E.g. on Linux,
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					# set BigDL-Nano env variables
 | 
				
			||||||
 | 
					source bigdl-nano-init
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# e.g. for a server with 48 cores per socket
 | 
				
			||||||
 | 
					export OMP_NUM_THREADS=48
 | 
				
			||||||
 | 
					numactl -C 0-47 -m 0 python ./generate.py --prompt 'def print_hello_world():'
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 2.3 Arguments Info
 | 
				
			||||||
 | 
					In the example, several arguments can be passed to satisfy your requirements:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					- `--repo-id-or-model-path`: str, argument defining the huggingface repo id for the CodeShell model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'WisdomShell/CodeShell-7B'`.
 | 
				
			||||||
 | 
					- `--prompt`: str, argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to be `def print_hello_world():`.
 | 
				
			||||||
 | 
					- `--n-predict`: int, argument defining the max number of tokens to predict. It is default to be `50`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 2.4 Sample Output
 | 
				
			||||||
 | 
					#### [WisdomShell/CodeShell-7B](https://huggingface.co/WisdomShell/CodeShell-7B)
 | 
				
			||||||
 | 
					```log
 | 
				
			||||||
 | 
					Inference time: xxxx s
 | 
				
			||||||
 | 
					-------------------- Prompt --------------------
 | 
				
			||||||
 | 
					def print_hello_world():
 | 
				
			||||||
 | 
					-------------------- Output --------------------
 | 
				
			||||||
 | 
					def print_hello_world():
 | 
				
			||||||
 | 
					    print("Hello World")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					print_hello_world()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# 2.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def print_hello_world_times(n):
 | 
				
			||||||
 | 
					    for i in range(n):
 | 
				
			||||||
 | 
					        print("Hello World")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					print
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,61 @@
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Copyright 2016 The BigDL Authors.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import torch
 | 
				
			||||||
 | 
					import time
 | 
				
			||||||
 | 
					import argparse
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from transformers import  AutoTokenizer, AutoModelForCausalLM
 | 
				
			||||||
 | 
					from bigdl.llm import optimize_model
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# you could tune the prompt based on your own model,
 | 
				
			||||||
 | 
					# here the prompt tuning refers to https://huggingface.co/WisdomShell/CodeShell-7B
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == '__main__':
 | 
				
			||||||
 | 
					    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for CodeShell model')
 | 
				
			||||||
 | 
					    parser.add_argument('--repo-id-or-model-path', type=str, default="WisdomShell/CodeShell-7B",
 | 
				
			||||||
 | 
					                        help='The huggingface repo id for the CodeShell model to be downloaded'
 | 
				
			||||||
 | 
					                             ', or the path to the huggingface checkpoint folder')
 | 
				
			||||||
 | 
					    parser.add_argument('--prompt', type=str, default="def print_hello_world():",
 | 
				
			||||||
 | 
					                        help='Prompt to infer')
 | 
				
			||||||
 | 
					    parser.add_argument('--n-predict', type=int, default=50,
 | 
				
			||||||
 | 
					                        help='Max tokens to predict')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    args = parser.parse_args()
 | 
				
			||||||
 | 
					    model_path = args.repo_id_or_model_path
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Load model
 | 
				
			||||||
 | 
					    model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # With only one line to enable BigDL-LLM optimization on model
 | 
				
			||||||
 | 
					    model = optimize_model(model)
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    # Load tokenizer
 | 
				
			||||||
 | 
					    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    # Generate predicted tokens
 | 
				
			||||||
 | 
					    with torch.inference_mode():
 | 
				
			||||||
 | 
					        prompt = args.prompt
 | 
				
			||||||
 | 
					        input_ids = tokenizer.encode(prompt, return_tensors="pt")
 | 
				
			||||||
 | 
					        st = time.time()
 | 
				
			||||||
 | 
					        output = model.generate(input_ids, max_new_tokens=args.n_predict)
 | 
				
			||||||
 | 
					        end = time.time()
 | 
				
			||||||
 | 
					        output_str = tokenizer.decode(output[0], skip_special_tokens=True)
 | 
				
			||||||
 | 
					        print(f'Inference time: {end-st} s')
 | 
				
			||||||
 | 
					        print('-'*20, 'Prompt', '-'*20)
 | 
				
			||||||
 | 
					        print(prompt)
 | 
				
			||||||
 | 
					        print('-'*20, 'Output', '-'*20)
 | 
				
			||||||
 | 
					        print(output_str)
 | 
				
			||||||
		Loading…
	
		Reference in a new issue