diff --git a/README.md b/README.md index 25938307..3de856de 100644 --- a/README.md +++ b/README.md @@ -161,6 +161,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa | Skywork | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/skywork) | | | InternLM-XComposer | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/internlm-xcomposer) | | | WizardCoder-Python | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/wizardcoder-python) | | +| CodeShell | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/CodeShell) | | ***For more details, please refer to the `bigdl-llm` [Document](https://test-bigdl-llm.readthedocs.io/en/main/doc/LLM/index.html), [Readme](python/llm), [Tutorial](https://github.com/intel-analytics/bigdl-llm-tutorial) and [API Doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/LLM/index.html).*** diff --git a/python/llm/README.md b/python/llm/README.md index de1c3627..1ee46b70 100644 --- a/python/llm/README.md +++ b/python/llm/README.md @@ -68,6 +68,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa | Skywork | [link](example/CPU/HF-Transformers-AutoModels/Model/skywork) | | | InternLM-XComposer | [link](example/CPU/HF-Transformers-AutoModels/Model/internlm-xcomposer) | | | WizardCoder-Python | [link](example/CPU/HF-Transformers-AutoModels/Model/wizardcoder-python) | | +| CodeShell | [link](example/CPU/HF-Transformers-AutoModels/Model/CodeShell) | | ### Working with `bigdl-llm` diff --git a/python/llm/example/CPU/HF-Transformers-AutoModels/Model/codeshell/README.md b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/codeshell/README.md new file mode 100644 index 00000000..24f2be64 --- /dev/null +++ b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/codeshell/README.md @@ -0,0 +1,79 @@ +# CodeShell-7B + +In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on CodeShell models. For illustration purposes, we utilize the [WisdomShell/CodeShell-7B](https://huggingface.co/WisdomShell/CodeShell-7B) as a reference CodeShell model. + +> **Note**: If you want to download the Hugging Face *Transformers* model, please refer to [here](https://huggingface.co/docs/hub/models-downloading#using-git). +> +> BigDL-LLM optimizes the *Transformers* model in INT4 precision at runtime, and thus no explicit conversion is needed. + +## Requirements +To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. + +## Example: Predict Tokens using `generate()` API +In the example [generate.py](./generate.py), we show a basic use case for a CodeShell model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations. +### 1. Install +We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#). + +After installing conda, create a Python environment for BigDL-LLM: +```bash +conda create -n llm python=3.9 # recommend to use Python 3.9 +conda activate llm + +pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option +``` + +### 2. Run +After setting up the Python environment, you could run the example by following steps. + +> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference. +> +> Please select the appropriate size of the CodeShell model based on the capabilities of your machine. + +#### 2.1 Client +On client Windows machines, it is recommended to run directly with full utilization of all cores: +```powershell +python ./generate.py --prompt 'def print_hello_world():' +``` +More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section. + +#### 2.2 Server +For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket. + +E.g. on Linux, +```bash +# set BigDL-Nano env variables +source bigdl-nano-init + +# e.g. for a server with 48 cores per socket +export OMP_NUM_THREADS=48 +numactl -C 0-47 -m 0 python ./generate.py --prompt 'def print_hello_world():' +``` +More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section. + +#### 2.3 Arguments Info +In the example, several arguments can be passed to satisfy your requirements: + +- `--repo-id-or-model-path`: str, argument defining the huggingface repo id for the CodeShell model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'WisdomShell/CodeShell-7B'`. +- `--prompt`: str, argument defining the prompt to be inferred (with integrated prompt format for code). It is default to be `def print_hello_world():`. +- `--n-predict`: int, argument defining the max number of tokens to predict. It is default to be `50`. + +#### 2.4 Sample Output +#### [WisdomShell/CodeShell-7B ](https://huggingface.co/WisdomShell/CodeShell-7B ) +```log +Inference time: xxxx s +-------------------- Prompt -------------------- +def print_hello_world(): +-------------------- Output -------------------- +def print_hello_world(): + print("Hello World") + +print_hello_world() + +# Function with parameters +def print_hello_name(name): + print("Hello " + name) + +print_hello_name("John") +print + +``` diff --git a/python/llm/example/CPU/HF-Transformers-AutoModels/Model/codeshell/generate.py b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/codeshell/generate.py new file mode 100644 index 00000000..50a542f6 --- /dev/null +++ b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/codeshell/generate.py @@ -0,0 +1,69 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import torch +import time +import argparse +import numpy as np + +from bigdl.llm.transformers import AutoModelForCausalLM +from transformers import AutoTokenizer + +# you could tune the prompt based on your own model, +# here the prompt tuning refers to: https://huggingface.co/WisdomShell/CodeShell-7B + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for CodeShell model') + parser.add_argument('--repo-id-or-model-path', type=str, default="WisdomShell/CodeShell-7B", + help='The huggingface repo id for the CodeShell model to be downloaded' + ', or the path to the huggingface checkpoint folder') + parser.add_argument('--prompt', type=str, default="def print_hello_world():", + help='Prompt to infer') + parser.add_argument('--n-predict', type=int, default=50, + help='Max tokens to predict') + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + + # Load model in 4 bit, + # which convert the relevant layers in the model into INT4 format + model = AutoModelForCausalLM.from_pretrained(model_path, + load_in_4bit=True, + trust_remote_code=True) + + # Load tokenizer + tokenizer = AutoTokenizer.from_pretrained(model_path, + trust_remote_code=True) + + # Generate predicted tokens + with torch.inference_mode(): + prompt = args.prompt + input_ids = tokenizer.encode(prompt, return_tensors="pt") + st = time.time() + # if your selected model is capable of utilizing previous key/value attentions + # to enhance decoding speed, but has `"use_cache": false` in its model config, + # it is important to set `use_cache=True` explicitly in the `generate` function + # to obtain optimal performance with BigDL-LLM INT4 optimizations + + output = model.generate(input_ids, max_new_tokens=args.n_predict) + + end = time.time() + output_str = tokenizer.decode(output[0], skip_special_tokens=True) + print(f'Inference time: {end-st} s') + print('-'*20, 'Prompt', '-'*20) + print(prompt) + print('-'*20, 'Output', '-'*20) + print(output_str) diff --git a/python/llm/example/CPU/PyTorch-Models/Model/codeshell/README.md b/python/llm/example/CPU/PyTorch-Models/Model/codeshell/README.md new file mode 100644 index 00000000..de580297 --- /dev/null +++ b/python/llm/example/CPU/PyTorch-Models/Model/codeshell/README.md @@ -0,0 +1,70 @@ +# CodeShell +In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate CodeShell models. For illustration purposes, we utilize the [WisdomShell/CodeShell-7B](https://huggingface.co/WisdomShell/CodeShell-7B ) as a reference CodeShell model. + +## Requirements +To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. + +## Example: Predict Tokens using `generate()` API +In the example [generate.py](./generate.py), we show a basic use case for a CodeShell model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations. +### 1. Install +We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#). + +After installing conda, create a Python environment for BigDL-LLM: +```bash +conda create -n llm python=3.9 # recommend to use Python 3.9 +conda activate llm + +pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option +``` + +### 2. Run +After setting up the Python environment, you could run the example by following steps. + +#### 2.1 Client +On client Windows machines, it is recommended to run directly with full utilization of all cores: +```powershell +python ./generate.py --prompt 'def print_hello_world():' +``` +More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section. + +#### 2.2 Server +For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket. + +E.g. on Linux, +```bash +# set BigDL-Nano env variables +source bigdl-nano-init + +# e.g. for a server with 48 cores per socket +export OMP_NUM_THREADS=48 +numactl -C 0-47 -m 0 python ./generate.py --prompt 'def print_hello_world():' +``` +More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section. + +#### 2.3 Arguments Info +In the example, several arguments can be passed to satisfy your requirements: + +- `--repo-id-or-model-path`: str, argument defining the huggingface repo id for the CodeShell model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'WisdomShell/CodeShell-7B'`. +- `--prompt`: str, argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to be `def print_hello_world():`. +- `--n-predict`: int, argument defining the max number of tokens to predict. It is default to be `50`. + +#### 2.4 Sample Output +#### [WisdomShell/CodeShell-7B](https://huggingface.co/WisdomShell/CodeShell-7B) +```log +Inference time: xxxx s +-------------------- Prompt -------------------- +def print_hello_world(): +-------------------- Output -------------------- +def print_hello_world(): + print("Hello World") + +print_hello_world() + +# 2. + +def print_hello_world_times(n): + for i in range(n): + print("Hello World") + +print +``` diff --git a/python/llm/example/CPU/PyTorch-Models/Model/codeshell/generate.py b/python/llm/example/CPU/PyTorch-Models/Model/codeshell/generate.py new file mode 100644 index 00000000..cd235025 --- /dev/null +++ b/python/llm/example/CPU/PyTorch-Models/Model/codeshell/generate.py @@ -0,0 +1,61 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import torch +import time +import argparse + +from transformers import AutoTokenizer, AutoModelForCausalLM +from bigdl.llm import optimize_model + +# you could tune the prompt based on your own model, +# here the prompt tuning refers to https://huggingface.co/WisdomShell/CodeShell-7B + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for CodeShell model') + parser.add_argument('--repo-id-or-model-path', type=str, default="WisdomShell/CodeShell-7B", + help='The huggingface repo id for the CodeShell model to be downloaded' + ', or the path to the huggingface checkpoint folder') + parser.add_argument('--prompt', type=str, default="def print_hello_world():", + help='Prompt to infer') + parser.add_argument('--n-predict', type=int, default=50, + help='Max tokens to predict') + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + + # Load model + model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True) + + # With only one line to enable BigDL-LLM optimization on model + model = optimize_model(model) + + # Load tokenizer + tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) + + # Generate predicted tokens + with torch.inference_mode(): + prompt = args.prompt + input_ids = tokenizer.encode(prompt, return_tensors="pt") + st = time.time() + output = model.generate(input_ids, max_new_tokens=args.n_predict) + end = time.time() + output_str = tokenizer.decode(output[0], skip_special_tokens=True) + print(f'Inference time: {end-st} s') + print('-'*20, 'Prompt', '-'*20) + print(prompt) + print('-'*20, 'Output', '-'*20) + print(output_str)