add CodeShell CPU example (#9345)

* add CodeShell CPU example

* fix some problems
This commit is contained in:
Yining Wang 2023-11-03 13:15:54 +08:00 committed by GitHub
parent 11a05641a4
commit 9377b9c5d7
6 changed files with 281 additions and 0 deletions

View file

@ -161,6 +161,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
| Skywork | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/skywork) | |
| InternLM-XComposer | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/internlm-xcomposer) | |
| WizardCoder-Python | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/wizardcoder-python) | |
| CodeShell | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/CodeShell) | |
***For more details, please refer to the `bigdl-llm` [Document](https://test-bigdl-llm.readthedocs.io/en/main/doc/LLM/index.html), [Readme](python/llm), [Tutorial](https://github.com/intel-analytics/bigdl-llm-tutorial) and [API Doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/LLM/index.html).***

View file

@ -68,6 +68,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
| Skywork | [link](example/CPU/HF-Transformers-AutoModels/Model/skywork) | |
| InternLM-XComposer | [link](example/CPU/HF-Transformers-AutoModels/Model/internlm-xcomposer) | |
| WizardCoder-Python | [link](example/CPU/HF-Transformers-AutoModels/Model/wizardcoder-python) | |
| CodeShell | [link](example/CPU/HF-Transformers-AutoModels/Model/CodeShell) | |
### Working with `bigdl-llm`

View file

@ -0,0 +1,79 @@
# CodeShell-7B
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on CodeShell models. For illustration purposes, we utilize the [WisdomShell/CodeShell-7B](https://huggingface.co/WisdomShell/CodeShell-7B) as a reference CodeShell model.
> **Note**: If you want to download the Hugging Face *Transformers* model, please refer to [here](https://huggingface.co/docs/hub/models-downloading#using-git).
>
> BigDL-LLM optimizes the *Transformers* model in INT4 precision at runtime, and thus no explicit conversion is needed.
## Requirements
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a CodeShell model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
### 1. Install
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
After installing conda, create a Python environment for BigDL-LLM:
```bash
conda create -n llm python=3.9 # recommend to use Python 3.9
conda activate llm
pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
```
### 2. Run
After setting up the Python environment, you could run the example by following steps.
> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
>
> Please select the appropriate size of the CodeShell model based on the capabilities of your machine.
#### 2.1 Client
On client Windows machines, it is recommended to run directly with full utilization of all cores:
```powershell
python ./generate.py --prompt 'def print_hello_world():'
```
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
#### 2.2 Server
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
E.g. on Linux,
```bash
# set BigDL-Nano env variables
source bigdl-nano-init
# e.g. for a server with 48 cores per socket
export OMP_NUM_THREADS=48
numactl -C 0-47 -m 0 python ./generate.py --prompt 'def print_hello_world():'
```
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
#### 2.3 Arguments Info
In the example, several arguments can be passed to satisfy your requirements:
- `--repo-id-or-model-path`: str, argument defining the huggingface repo id for the CodeShell model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'WisdomShell/CodeShell-7B'`.
- `--prompt`: str, argument defining the prompt to be inferred (with integrated prompt format for code). It is default to be `def print_hello_world():`.
- `--n-predict`: int, argument defining the max number of tokens to predict. It is default to be `50`.
#### 2.4 Sample Output
#### [WisdomShell/CodeShell-7B ](https://huggingface.co/WisdomShell/CodeShell-7B )
```log
Inference time: xxxx s
-------------------- Prompt --------------------
def print_hello_world():
-------------------- Output --------------------
def print_hello_world():
print("Hello World")
print_hello_world()
# Function with parameters
def print_hello_name(name):
print("Hello " + name)
print_hello_name("John")
print
```

View file

@ -0,0 +1,69 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
import numpy as np
from bigdl.llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
# you could tune the prompt based on your own model,
# here the prompt tuning refers to: https://huggingface.co/WisdomShell/CodeShell-7B
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for CodeShell model')
parser.add_argument('--repo-id-or-model-path', type=str, default="WisdomShell/CodeShell-7B",
help='The huggingface repo id for the CodeShell model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="def print_hello_world():",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=50,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
trust_remote_code=True)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
# Generate predicted tokens
with torch.inference_mode():
prompt = args.prompt
input_ids = tokenizer.encode(prompt, return_tensors="pt")
st = time.time()
# if your selected model is capable of utilizing previous key/value attentions
# to enhance decoding speed, but has `"use_cache": false` in its model config,
# it is important to set `use_cache=True` explicitly in the `generate` function
# to obtain optimal performance with BigDL-LLM INT4 optimizations
output = model.generate(input_ids, max_new_tokens=args.n_predict)
end = time.time()
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(output_str)

View file

@ -0,0 +1,70 @@
# CodeShell
In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate CodeShell models. For illustration purposes, we utilize the [WisdomShell/CodeShell-7B](https://huggingface.co/WisdomShell/CodeShell-7B ) as a reference CodeShell model.
## Requirements
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a CodeShell model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
### 1. Install
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
After installing conda, create a Python environment for BigDL-LLM:
```bash
conda create -n llm python=3.9 # recommend to use Python 3.9
conda activate llm
pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
```
### 2. Run
After setting up the Python environment, you could run the example by following steps.
#### 2.1 Client
On client Windows machines, it is recommended to run directly with full utilization of all cores:
```powershell
python ./generate.py --prompt 'def print_hello_world():'
```
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
#### 2.2 Server
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
E.g. on Linux,
```bash
# set BigDL-Nano env variables
source bigdl-nano-init
# e.g. for a server with 48 cores per socket
export OMP_NUM_THREADS=48
numactl -C 0-47 -m 0 python ./generate.py --prompt 'def print_hello_world():'
```
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
#### 2.3 Arguments Info
In the example, several arguments can be passed to satisfy your requirements:
- `--repo-id-or-model-path`: str, argument defining the huggingface repo id for the CodeShell model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'WisdomShell/CodeShell-7B'`.
- `--prompt`: str, argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to be `def print_hello_world():`.
- `--n-predict`: int, argument defining the max number of tokens to predict. It is default to be `50`.
#### 2.4 Sample Output
#### [WisdomShell/CodeShell-7B](https://huggingface.co/WisdomShell/CodeShell-7B)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
def print_hello_world():
-------------------- Output --------------------
def print_hello_world():
print("Hello World")
print_hello_world()
# 2.
def print_hello_world_times(n):
for i in range(n):
print("Hello World")
print
```

View file

@ -0,0 +1,61 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
from transformers import AutoTokenizer, AutoModelForCausalLM
from bigdl.llm import optimize_model
# you could tune the prompt based on your own model,
# here the prompt tuning refers to https://huggingface.co/WisdomShell/CodeShell-7B
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for CodeShell model')
parser.add_argument('--repo-id-or-model-path', type=str, default="WisdomShell/CodeShell-7B",
help='The huggingface repo id for the CodeShell model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="def print_hello_world():",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=50,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
# Load model
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
# With only one line to enable BigDL-LLM optimization on model
model = optimize_model(model)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
# Generate predicted tokens
with torch.inference_mode():
prompt = args.prompt
input_ids = tokenizer.encode(prompt, return_tensors="pt")
st = time.time()
output = model.generate(input_ids, max_new_tokens=args.n_predict)
end = time.time()
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(output_str)